Skip to main content

Solvent Extraction for Microalgae Lipids

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Abstract

This chapter analyzes the solvent extraction and fractionation of algal oil for biodiesel production. Initially the basic thermodynamic principles for the dissolution of materials into solvents are outlines. For a rational design of solvent or solvent system to be used, a crucial step in the downstream processing, a quantitative approach is explained, based on the calculation of the solubility parameters (polarity index, solubility parameters and dipole moments) for the solvent and the lipid class to be extracted. This allows a great reduction in the experimental design in lipid extraction. The possible pre-treatments of biomass are then studied. The core of the chapter is devoted to analyzing the extraction of lipids from both dry and paste biomass, and how to solve some problems that occur due to the nature of lipids present and the possibility of their prior fractionation. The following section discusses an alternative to the extraction of lipids for biofuel, namely the direct extraction of fatty acids from biomass by means of a direct saponification of both dry and paste biomass and their eventual fractionation. Then we analyze the direct production of FAMEs (biodiesel) through a direct transesterification of wet paste biomass. The pros and cons of the three methods are also analyzed. Finally, the chapter also provides an assessment of a case study for processing the wet biomass produced in a 1 ha plant of tubular photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackman RG, Tocher CS (1968) Marine phytoplankter fatty acid. J Fish Res Board 25:1603–1620

    Article  CAS  Google Scholar 

  • Algren G, Merino L (1991) Lipid analysis of freshwater microalgae: a method study. Arch Hydrobiol 121:295–306

    Google Scholar 

  • Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380

    Article  CAS  Google Scholar 

  • Belarbi EH, Molina-Grima E, Chisti Y (2000) A process for high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Bonner WD (1910) Experimental determination of binodal curves, plait points, and tie lines, in fifty systems, each consisting of water and two organic liquids. JPhysChem 14:738–789

    Google Scholar 

  • Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. J Agric Food Chem 55:4795–4801

    Article  CAS  Google Scholar 

  • Cartens M, Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Ibáñez-González MJ (1996) Eicosapentaenoic acid (20:5n-3) from the marine microalga Phaeodactylum tricornutum. J Am Oil Chem Soc 72:1–7

    Google Scholar 

  • Cerón-García MC, Campos-Sánchez I, Sánchez-Fernández JF, Acién-Fernández FG, Molina-Grima E, Fernández-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766

    Article  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204

    Article  CAS  Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc 49:97–116

    Article  CAS  Google Scholar 

  • Cohen Z, Cohen S (1991) Preparation of eicosapentaenoic acid (EPA) concentrate from Porphyridium cruentum. J Am Oil Chem Soc 68:16–19

    Article  CAS  Google Scholar 

  • Cooney M, Young G (2009) Methods and compositions for extraction and transesterification of biomass. USA Patent Application 2009/0234146 A1

    Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Biosep Rev 38:291–325

    Article  CAS  Google Scholar 

  • Coulson JM, Richardson JF (1968) Chemical engineering unit operation, vol II. Pergamon Press, Oxford, 799 pp

    Google Scholar 

  • Dunstan GA, Volkman JK, Jefrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acid. Exp Mar Biol Ecol 161:115–134

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GM (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Garrido F, Banerjee U, Chisti Y, Moo-Young M (1994) Disruption of a recombinant yeast for the release of β-galactosidase. Bioseparation 4:319–328

    CAS  Google Scholar 

  • Gelin F, Boogers I, Noordeloos A, Damste J, Riegman R, De Leeuw J (1997) Resistant Biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: Geochemical implications. Organ Geochem 26:659–675

    Article  CAS  Google Scholar 

  • Giménez-Giménez A, Ibáñez-González MJ, Robles-Medina A, Molina-Grima E, García-Salas S, Esteban-Cerdán L (1998) Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids from microalga Porphyridium cruentum. Bioseparation 16:517–580

    Google Scholar 

  • Guckert JB, Cooksey KE, Jackson LL (1988) Lipid solvent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8:139–149

    Article  CAS  Google Scholar 

  • Gupta MN, Batra R, Tyagi R, Sharma A (1997) Polarity Index: the guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnol Prog 13:284–288

    Article  CAS  Google Scholar 

  • Hansen MA (1967) The three dimensional solubility parameter and solvent diffusion coefficient. Their importance in surface coating formulation. PhD thesis, Den Polytekniske Laereanstalt, Danmarks Tekniske Højskole, Copenhagen, Danish Technical Press, pp106

    Google Scholar 

  • Hansen MA (2008) Polymers science applied to biological problems: Prediction of cytotoxic drug interactions with DNA. Eur Polym J 44:2741–2748

    Article  CAS  Google Scholar 

  • Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  CAS  Google Scholar 

  • Hedenskog G, Ebbinghaus L (1972) Reduction of the nucleic acid content of single-cell protein concentrates. Biotech Bioeng 14:447–457

    Article  CAS  Google Scholar 

  • Ibañez-González MJ, Robles-Medina A, Molina-Grima E, Giménez-Giménez A, Carstens M, Esteban-Cerdán L (1998) Optimization of fatty acid extraction from Phaeodactylum tricornutum UTEX 640 biomass. J Am Oil Chem Soc 75:1735–1740

    Article  Google Scholar 

  • Jung S, Mauer D, Johnson LA (2009) Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans. Biores Technol 100:5340–5347

    Article  CAS  Google Scholar 

  • Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. Elsevier Science Publishers, Amsterdam, 464 pp

    Google Scholar 

  • Kayama M, Araki S, Sato S (1989) Lipids of marine plants. In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol II. CRC Press, Boca Raton, pp 4–19

    Google Scholar 

  • Kim Y-H, Choi YK, Park J, Lee S, Yang YH, Kim HJ, Park TJ, Kim Y-H (2012) Ionic Liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    Google Scholar 

  • Kochert G (1978) Quantitation of the macromolecular components of microalgae. In: Hellebust JA, Craigie JS (Eds), Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 189–195

    Google Scholar 

  • Lalman JA, Bagley DM (2004) Extraction long-chain fatty acids from a fermentation medium. J Am Oil Chem Soc 81:105–110

    Article  CAS  Google Scholar 

  • Lee RE (1989) Phycology, 2nd edn. Cambridge University Press, Cambridge, 644 pp

    Google Scholar 

  • Lee SJ, Jun B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  CAS  Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  CAS  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction method for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116

    Article  CAS  Google Scholar 

  • Lide DR (ed) (2001) Handbook of chemistry and physics. CRC Press LLC, Boca Raton, 2712 pp

    Google Scholar 

  • Lo TC, Baird MH, Hanson C (eds) (1983) Handbook of solvent extraction, vol 1. Wiley, New York, 457 pp

    Google Scholar 

  • López-Alonso D, Belardi EH, Rodríguez-Ruíz J, Segura-del C, Giménez-Giménez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Article  Google Scholar 

  • Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  • Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Sánchez-Pérez JA, García-Camacho F, García-Sánchez JL (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71:955–959

    Article  CAS  Google Scholar 

  • Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Ibañez-González MJ (1996) Gram-scale purification of eicosapentaenoic acid (EPA, 20:5n-3) from wet Phaeodactylum tricornutum UTEX 640 biomass. J Appl Phycol 8:359–367

    Article  Google Scholar 

  • Molina-Grima E, Robles-Medina A, Giménez-Giménez A (1999) Recovery of algal PUFAs. In: Cohen Z (ed) Chemical from microalgae. Taylor & Ltd, London, pp 108–144

    Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester from microalgae. Appl Biochem Biotechnol 24:355–361

    Article  Google Scholar 

  • Nasirullah (2005) Physical refining: electrolyte degumming of nonhydra­table gums from selected vegetable oils. J Food Lipid 12:103–111

    Article  CAS  Google Scholar 

  • Perry RH, Green DW, Maloney JO (eds) (2003) Perry Manual del Ingeniero Químico, 6th Spanish edn. Mc Graw-Hill, Mexico, 2577 pp

    Google Scholar 

  • Pohl P, Zurheide F (1982) Marine algae in pharmaceutical science, vol 2. Walter de Gruyter & Co, New York, pp 65–89

    Google Scholar 

  • Porter NA, Caldwell SE, Caren AM (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–283

    Article  CAS  Google Scholar 

  • Rajam L, Soban DR, Sundaresan A, Arumughan C (2005) A novel process for physically refining Rice Bran oil through simultaneous degumming and dewaxing. J Am Oil Chem Soc 82:213–220

    Article  CAS  Google Scholar 

  • Ramírez-Fajardo A, Esteban-Cerdán L, Robles-Medina A, Acién-Fernández FG, González-Moreno PA, Molina-Grima E (2007) Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol 109:120–126

    Article  Google Scholar 

  • Robles-Medina A, Giménez-Giménez A, García-Camacho F, Sánchez-Pérez JA, Molina-Grima E, Contreras-Gómez A (1995a) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J Am Oil Chem Soc 72:575–583

    Article  CAS  Google Scholar 

  • Robles-Medina A, Giménez-Giménez A, García-Camacho F, Sánchez-Pérez JA, Molina-Grima E, García-Sánchez JL (1995b) Obtención de concentrados de ácidos grasos poliinsaturados por el método de los compuestos de inclusión de urea. Grasas Aceites 42:174–182

    Article  Google Scholar 

  • Robles-Medina A, Giménez-Giménez A, Ibáñez-González MJ (1998) Downprocessing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580

    Article  CAS  Google Scholar 

  • Rodríguez-Ruíz J, Belarbi H, García-Sánchez JL, López-Alonso D (1998) Rapid simultaneous lipid extraction and transesterification of fatty acids analyses. Biotechnology 12:689–691

    Google Scholar 

  • Sekine T, Hasegawa Y (1977) Solvent extraction chemistry: fundamentals and applications. Marcel Dekker Inc., New York, 919 pp

    Google Scholar 

  • Seto A, Yamashita S (1986) Method of preparing fatty acid composition containing high concentration of eicosapentaenoic acid. USA Patent 4,615,839, 7 Oct 1986

    Google Scholar 

  • Shahidi F (ed) (2005) Bailey´s industrial oils and fats, products. Vol 5. Edible oil and fats products: processing technologies. Wiley, New York, 3616 pp

    Google Scholar 

  • Shuit SH, Lee KT, Kamarududdin AH, Yusup S (2010) Reactive extraction and in situ esterification of Jartropha curcas L. Seeds for the production of biodiesel. Fuel 89:527–530

    Article  CAS  Google Scholar 

  • Snyder LR (1974) Classification of the solvent properties of common liquids. J Chromatogr 92:223–230

    Article  CAS  Google Scholar 

  • Stefanis E, Panayiotou C (2008) Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–685

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692

    Article  CAS  Google Scholar 

  • Tijssen R, Billiet HAH, Schoenmakers PJ (1976) Use of the solubility parameter for predicing selectivity and retention in chromatography. J Chromatogr 122:185–203

    Article  CAS  Google Scholar 

  • Tomaselli L (2004) The microalgal cell. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 3–19

    Google Scholar 

  • Van Dyck JW, Frish HL, Wu DT (1989) Solubility, solvency, and parameters. Ind Eng Chem Prod Res Dev 24:473–478

    Article  Google Scholar 

  • Van Kreevelen DE, Chermin HAG (1951) Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem Eng Sci 1:66–80

    Article  Google Scholar 

  • Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121

    Article  CAS  Google Scholar 

  • Zhukov AV, Vereshchagin AG (1981) Current techniques of extraction, purification and preliminary fractionation of polar lipids of natural origin. Adv Lipid Res 18:247–282

    CAS  Google Scholar 

Download references

Acknowledgements

Our most sincere recognition to our colleagues of the Marine Microalgae Biotechnology group, of the University of Almería, which over the past 20 years have been co-working with us on the topics treated in this chapter. Especially, to Prof Robles-Medina and Dr Belarbi EH and Dr González-Moreno by their help, suggestions and criticisms on the contents of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Molina Grima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grima, E.M., González, M.J.I., Giménez, A.G. (2013). Solvent Extraction for Microalgae Lipids. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_11

Download citation

Publish with us

Policies and ethics