Energy from Microalgae: A Short History

  • Michael A. Borowitzka
Part of the Developments in Applied Phycology book series (DAPH, volume 5)


The current extensive research and development activities on microalgae as commercial sources of renewable fuels and energy rely on the basic and applied research on biology, physiology, culture methods, culture systems etc. undertaken in the past. This chapter provides a brief overview of some of the major steps in the development of R&D on the mass culture algae for practical applications and commercial products, with a particular focus on microalgae as sources of renewable energy. This chapter attempts to highlight the development and evolution of many of the key concepts and research in the field including the development of large-scale culture systems and attempts at long term stable high productivity algae cultures, the understanding of the major limitations affecting outdoor algae cultures, especially light utilization efficiency and the lessons learned from the development of commercial microalgae production.


Algal Biomass Phaeodactylum Tricornutum Dark Fermentation Raceway Pond Botryococcus Braunii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aach HG (1952) Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch Mikrobiol 17:213–246Google Scholar
  2. Anderson DB, Eakin DE (1985) A process for the production of polysaccharides from microalgae. Biotechnol Bioeng Symp 15:533–547Google Scholar
  3. Anon (1953) Pilot-plant studies in the production of Chlorella. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 235–272Google Scholar
  4. Ansell AD, Raymont JEG, Lauder KF, Crowley E, Shackley P (1963) Studies on the mass culture of Phaeodactylum. II. The growth of Phaeodactylum and other species in outdoor tanks. Limnol Oceanogr 8:184–206Google Scholar
  5. Arad S, Richmond A (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Porphyridium sp. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 289–297Google Scholar
  6. Avron M, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton, p 240Google Scholar
  7. Bachofen R (1982) The production of hydrocarbons by Botryococcus braunii. Experientia 38:47–49Google Scholar
  8. Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129Google Scholar
  9. Becker EW (1994) Microalgae. Biotechnology and Microbiology. Cambridge University Press, Cambridge, p 293Google Scholar
  10. Becker EW, Venkataraman LV (1982) Biotechnology and exploitation of algae – the Indian approach. German Agency for Tech. Co-op, EschbornGoogle Scholar
  11. Beijerinck MW (1890) Kulturversuche mit Zoochloren, Lichenen­gonidien und anderen niederen Algen. Bot Z 48:725–785Google Scholar
  12. Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158Google Scholar
  13. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1994) Production of high quality Spirulina at earthrise farms. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp 92–102Google Scholar
  14. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Dunaliella. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 273–280Google Scholar
  15. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126Google Scholar
  16. Ben-Amotz A, Polle JEW, Subba Rao DV (eds) (2009) The alga Dunaliella. Biodiversity, Physiology, Genomics and Biotechnology. Scibce Publishers, Enfield, p 556Google Scholar
  17. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300Google Scholar
  18. Benemann J (2009) Biohydrogen production. Final summary report 1996–2000. Hawaii Natural Energy Institute, University of Hawaii, Honolulu, pp 1–28Google Scholar
  19. Benemann JR, Koopman BL, Baker D, Goebel RP, Oswald WJ (1977) Design of the algal pond subsystem of the photosynthesis energy factory. Final report to the U.S. Energy Research and Development Administration. NTIS #HCPT3548-01, pp 1–98Google Scholar
  20. Benemann JR, Pursoff P, Oswald WJ (1978) Engineering design and cost analysis of a large-scale microalgae biomass system. Final report to the U.S. Department of Energy. NTIS #HCP/T1605-01 UC-61, pp 1–91Google Scholar
  21. Benemann J, Koopman B, Weissman J, Eisenberg D, Goebel R (1980) Development of microalgae harvesting and high-rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 457–495Google Scholar
  22. Boonyaratpalin M, Thongrod S, Supamattaya K, Britton G, Schlipalius LE (2001) Effects of ß-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus monodon. Aquacult Res 32(Suppl 1):182–190Google Scholar
  23. Borowitzka LJ (1991) Development of western biotechnology algal beta-carotene plant. Biores Technol 38:251–252Google Scholar
  24. Borowitzka LJ (1992) Commercial Dunaliella production: history of development. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Universidade de Compostela, Santiago de Compostela, pp 233–245Google Scholar
  25. Borowitzka LJ (1994) Commercial pigment production from algae. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp 82–84Google Scholar
  26. Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401Google Scholar
  27. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321Google Scholar
  28. Borowitzka MA (2005) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS, Urbana, pp 124–137Google Scholar
  29. Borowitzka LJ, Borowitzka MA (1981) Roche’s development of Dunaliella technology in Australia. In: Thirteenth International Botanical Congress, Sydney. Abstracts 183Google Scholar
  30. Borowitzka MA, Borowitzka LJ (1988a) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381Google Scholar
  31. Borowitzka MA, Borowitzka LJ (eds) (1988b) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 1–466Google Scholar
  32. Borowitzka LJ, Borowitzka MA (1989) ß-Carotene (Provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier Applied Science, London, pp 15–26Google Scholar
  33. Borowitzka LJ, Borowitzka MA (1990) Commercial production of ß-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252Google Scholar
  34. Borowitzka LJ, Borowitzka MA, Moulton T (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia 116/117:115–121Google Scholar
  35. Borowitzka LJ, Moulton TP, Borowitzka MA (1985) Salinity and the commercial production of beta-carotene from Dunaliella salina. Nova Hedwigia, Beih 81:217–222Google Scholar
  36. Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent Application 9,728,274Google Scholar
  37. Buchholz R (1999) Bioreactor with U-shaped reactor elements. European Patent 911386Google Scholar
  38. Bunnag B, Tanticharoen M, Ruengjitchatchawalya M (1998) Present status of microalgal research and cultivation in Thailand. In: Subramanian G, Kaushik BD, Venkataraman GS (eds) Cyanobacterial Biotechnology. Oxford & IBH Publishing Co, New Delhi, pp 325–328Google Scholar
  39. Burlew JS (ed) (1953a) Algae culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 1–357Google Scholar
  40. Burlew JS (1953b) Current status of large-scale culture of algae. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 3–23Google Scholar
  41. Caldwell, Connell Engineers (1976) Algae harvesting from sewage. Australian Government Publishing Service, Canberra, p 97Google Scholar
  42. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480Google Scholar
  43. Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol Bioeng 27:286–295Google Scholar
  44. Chaumont D, Thepenier C, Gudin C, Junjas C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant (1981–1987). In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 199–208Google Scholar
  45. Chen PH (1987) Factors influencing methane fermentation of microalgae. PhD thesis, University of California, BerkeleyGoogle Scholar
  46. Chihara M, Nakayama T, Inouye I, Kodama M (1994) Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae). Arch Protistenk 144:227–235Google Scholar
  47. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578Google Scholar
  48. Clement G (1975) Production et constituents caracteristiques des algues Spirulina platensis et maxima. Ann Nutr Aliment 29:477–488Google Scholar
  49. Clement G, Giddey C, Menzi R (1967) Amino acid composition and nutritive value of the alga Spirulina maxima. J Sci Food Agric 18:497–501Google Scholar
  50. Cohn F (1850) Zur Naturgeschichte des Protococcus pluvialis Kützing. Nova Acta Academia Leopoldensis Caroliensis 22:607Google Scholar
  51. Cook PM (1950) Large-scale culture of Chlorella. In: Brunel J, Prescott GW (eds) The culture of algae. Charles F. Kettering Foundation, Dayton, pp 53–77Google Scholar
  52. Curtain CC, West SM, Schlipalius L (1987) Manufacture of ß-carotene from the salt lake alga Dunaliella salina; the scientific and technical background. Aust J Biotechnol 1:51–57Google Scholar
  53. Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Haematococcus. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 281–288Google Scholar
  54. D’Elia CF, Ryther JH, Losordo TM (1977) Productivity and nitrogen balance in large scale phytoplankton cultures. Water Res 11:1031–1040Google Scholar
  55. Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1953) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 105–153Google Scholar
  56. Delente JJ, Behrens PW, Hoeksma SD (1992) Closed photobioreactor and method of use. US Patent 5,151,347Google Scholar
  57. Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Algol Stud 76:129–147Google Scholar
  58. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412Google Scholar
  59. Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64Google Scholar
  60. El-Fouly MM (1980) Proceedings of the second egyptial algae symposium. National Research Centre, Cairo, pp 1–232Google Scholar
  61. Emerson R, Arnold W (1932) The photochemical reactions in photosynthesis. J Gen Physiol 16:191–205Google Scholar
  62. Evenari M, Mayer AM, Gottesman E (1953) Experiments of culture of algae in Israel. In: Burlew JS (ed) Algal culture. From laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 197–203Google Scholar
  63. Famintzin A (1871) Die anorganischen Salze als ausgezeichneted Hülfsmittel zum Studium der Entwicklung niederer chlorophyllhaltiger Organismen. Bull Acad Sci St Petersburg 17:31–70Google Scholar
  64. Farrar WV (1966) Tecuitlatl: a glimpse of Aztec food technology. Nature 211:341–342Google Scholar
  65. Florenzano G (1958) Prime ricerche in Italia, nell’impianto sperimentale di Firence, sulla cultura massiva non sterile de alghe. Nuovo Giornale Botanica Italia 65:1–15Google Scholar
  66. Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143:204–205Google Scholar
  67. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240Google Scholar
  68. Geoghegan MJ (1951) Unicellular algae as food. Nature 168:426–427Google Scholar
  69. Geoghegan MJ (1953) Experiments with Chlorella at Jealott’s Hill. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 182–189Google Scholar
  70. Goldman JC (1979) Outdoor algal mass cultures – I. Applications. Water Res 13:1–19Google Scholar
  71. Goldman JC, Ryther JH (1976) Temperature-influenced species competition in mass culture of marine phytoplankton. Biotechnol Bioeng 18:1125–1144Google Scholar
  72. Goldman JC, Stanley HI (1974) Relative growth of different species of marine algae in wastewater-seawater mixtures. Mar Biol 28:17–25Google Scholar
  73. Golueke CG, Oswald WJ (1965) Harvesting and processing of sewage-grown planktonic algae. J Water Pollut Control Fed 37:471–498Google Scholar
  74. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55Google Scholar
  75. Gowans CS (1976) Publications by Franz Moewus on the genetics of algae. In: Lewin RA (ed) The genetics of algae. Blackwell Scientific Publications, Oxford, pp 310–332Google Scholar
  76. Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity? J Appl Phycol 1:333–340Google Scholar
  77. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light dark fluctuations. J Appl Phycol 6:331–335Google Scholar
  78. Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343Google Scholar
  79. Gromov BV (1967) Main trends in experimental work with algal cultures in the U.S.S.R. In: Jackson DF (ed) Algae, man and the environment. Syracuse University Press, Syracuse, pp 249–278Google Scholar
  80. Gudin C (1976) Method of growing plant cells. US Patent 3,955,317Google Scholar
  81. Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In: Palz W, Pirrwitz D (eds) Proceedings of the workshop and E.C. Contractor’s meeting in Capri. Reidel Publ. Co, Dordrecht, pp 184–193Google Scholar
  82. Gummert F, Meffert ME, Stratmann H (1953) Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 166–176Google Scholar
  83. Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46:799–809Google Scholar
  84. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348Google Scholar
  85. Harder R, von Witsch H (1942a) Bericht über Versuche zur Fettsynthese mittels autotropher Microorganismen. Forschungsdienst Sonderheft 16:270–275Google Scholar
  86. Harder R, von Witsch H (1942b) Die Massenkultur von Diatomeen. Ber Deutsch Bot Ges 60:146–152Google Scholar
  87. Heussler P (1980) Advance and prospects of microalgae culture experiences of the Peruvian German microalgae project. In: El-Fouly MM (ed) Proceedings of the Second Egyptian Algae Symposium. March 11–13, 1979, Cairo. National Research Centre, Cairo, pp 173–200Google Scholar
  88. Hills CB (1984) Method for growing a biomass in a closed tubular system. US Patent 4,473,970Google Scholar
  89. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60Google Scholar
  90. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998a) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662Google Scholar
  91. Hu Q, Zarmi Y, Richmond A (1998b) Combined effects of light intensity, light-path, and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 32:165–171Google Scholar
  92. Huntley ME, Wahlberg DD, Redalje DG (1991) Process and apparatus for the production of photosynthetic microbes. PCT Patent Application 91/05849Google Scholar
  93. Hutner SH, Provasoli L (1964) Nutrition of algae. Ann Rev Plant Physiol 15:37–56Google Scholar
  94. Ichimura S, Ozono M (1976) Photosynthesis reactor tank. US Patent 3,986,297Google Scholar
  95. Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148Google Scholar
  96. Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella solokiniana under medium duration light/dark cycles: 13–87 s. J Biotechnol 70:323–333Google Scholar
  97. Javamardian M, Palsson BO (1991) High density photoautotrophic algal cultures: design, construction and operation of a novel photobioreactor system. Biotechnol Bioeng 38:1182–1189Google Scholar
  98. Johnston HW (1970) The biological and economic importance of algae. III. Edible algae of fresh and brackish waters. Tuatara 18:19–24Google Scholar
  99. Jüttner F (1982) Mass cultivation of microalgae and photosynthetic bacteria under sterile conditions. Proc Biochem 7:2–7Google Scholar
  100. Jüttner F, Victor H, Metzner H (1971) Massenanzucht phototropher Organismen in einer automatischen Kulturanlage. Arch Mikrobiol 77:275–280Google Scholar
  101. Kanizawa T, Fujita C, Yuhata T, Sasa T (1958) Mass culture of unicellular algae using the ‘open circulation method’. J Gen Appl Microbiol 4:135–152Google Scholar
  102. Kawaguchi K (1980) Microalgae production systems in Asia. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 25–33Google Scholar
  103. Ketchum BH, Redfield AC (1938) A method for maintaining a continuous supply of marine diatoms by culture. Biol Bull 75:165–169Google Scholar
  104. Ketchum BH, Lillick L, Redfield AC (1949) The growth and optimum yield s of unicellular algae in mass culture. J Cell Comp Physiol 33:267–279Google Scholar
  105. Kobayashi K (1997) Tubular-type photobioreactor. Japan Patent 9,121,835Google Scholar
  106. Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga for high-density cultivation. J Mar Biotechnol 1:21–25Google Scholar
  107. Kok B (1948) A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13:1–56Google Scholar
  108. Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 63–75Google Scholar
  109. Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21:245–258Google Scholar
  110. Krauss RW (1962) Mass culture of algae for food and other organic compounds. Am J Bot 49:425–435Google Scholar
  111. Krüger GHJ, Eloff JN (1981) Defined algal production systems for the culture of microalgae. University of the Orange Free State Publications, Series C 3:16–23Google Scholar
  112. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manage 36:689–692Google Scholar
  113. Kyle DJ, Boswell KDB, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Bills DD, Kung SD (eds) Biotechnology and Nutrition. Butterworth-Heinemann, Boston, pp 451–468Google Scholar
  114. Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1951Google Scholar
  115. Laws EA (1986) Use of the flashing light effect to stimulate production in algal mass cultures. Nova Hedwigia Beih 83:230–234Google Scholar
  116. Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411Google Scholar
  117. Lerche W (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenk 88:236–268Google Scholar
  118. Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Harvesting of algae by froth flotation. Appl Microbiol 10:1–69Google Scholar
  119. Lewin RA (1949) Genetics of Chlamydomonas – paving the way. Biol Bull 97:243–244Google Scholar
  120. Lewin RA (1951) Isolation of sexual strains of Chlamydomonas. J Gen Microbiol 5:926–929Google Scholar
  121. Lewin RA (1953) The genetics of Chlamydomonas moewusii. J Genet 51:543–550Google Scholar
  122. Lewin RA (1954) Mutants of Chlamydomonas moewusii with impaired motility. J Gen Microbiol 11:358–363Google Scholar
  123. Li DM (1997) Spirulina industry in China: present status and future prospects. J Appl Phycol 9:25–28Google Scholar
  124. Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina Teod. Ukr Bot Zh 23:12–19Google Scholar
  125. Massyuk NP (1973) Morphology, taxonomy, ecology and geographic distribution of the genus Dunaliella Teod. And prospects for its potential utilization. Naukova Dumka, Kiev, p 242Google Scholar
  126. Massyuk NP, Abdula EG (1969) First experiment of growing carotene-containing algae under semi- industrial conditions. Ukr Bot Zh 26:21–27Google Scholar
  127. Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51–52:681–692Google Scholar
  128. Matsunaga T, Izumida H (1984) Seawater-based methane production from blue-green algae biomass by marine bacteria coculture. Biotechnol Bioeng 14:407–418Google Scholar
  129. Mayer AM, Zuri U, Sham Y, Ginzburg H (1964) Problems of design and ecological considerations in mass culture of algae. Biotechnol Bioeng 6:173–190Google Scholar
  130. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748Google Scholar
  131. Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525Google Scholar
  132. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496Google Scholar
  133. Michiki H (1995) Biological CO2 fixation and utilization project. Energy Convers Manage 36:701–705Google Scholar
  134. Milner HW (1951) Possibilities in photosynthetic methods for production of oils and proteins. JAOCS 28:363–367Google Scholar
  135. Miquel P (1892) De la culture artificielle des Diatomées. Comp Rend Acad Sci Paris 94:780–782Google Scholar
  136. Mitsui A, Kumazawa S (1977) Hydrogen production by marine photosynthetic organisms as a potential energy source. Biological solar energy conversion. In: Proceedings of the conference, Miami, Fla, November 15–18, 1976. Academic, New York, pp 23–51Google Scholar
  137. Mituya A, Nyunoya T, Tamiya H (1953) Pre-pilot-plant experiments on algal mass culture. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 273–281Google Scholar
  138. Miyake J, Matsunaga T, San Pietro A (eds) (2001) Biohydrogen II. Pergamon Press, New YorkGoogle Scholar
  139. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (1993) Prasinococcus capsulatus gen et sp nov, a new marine coccoid prasinophyte. J Gen Appl Microbiol 39:571–582Google Scholar
  140. Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 547–571Google Scholar
  141. Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 395–414Google Scholar
  142. Mohn FH, Cordero-Contreras O (1990) Harvesting of the alga Dunaliella – some consideration concerning its cultivation and impact on the production costs of ß-carotene. Berichte des Forschungszentrums Jülich 2438:1–50Google Scholar
  143. Moldowan JM, Seifert WK (1980) First discovery of botryococcane in petroleum. J Chem Soc Chem Commun 1980:912–914Google Scholar
  144. Moore A (2001) Blooming prospects? EMBO Rep 2:462–464Google Scholar
  145. Morimura Y, Nihei T, Sasa T (1955) Outdoor bubbling culture of some unicellular algae. J Gen Appl Microbiol 1:173–182Google Scholar
  146. Moulton TP, Borowitzka LJ, Vincent DJ (1987) The mass culture of Dunaliella salina for ß-carotene: from pilot plant to production plant. Hydrobiologia 151–152:99–105Google Scholar
  147. Murakami M, Inkenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2) – screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage 38:S493–S497Google Scholar
  148. Myers J, Clark LB (1944) Culture conditions and the development of the photosynthetic mechanisms. II. An apparatus for the continuous culture of Chlorella. J Gen Physiol 28:103–112Google Scholar
  149. Nanba M, Kawata M (1998) CO2 removal by a bioreactor with photosynthetic algae using solar-collecting and light-diffusing optical devices. Stud Surf Sci Catal 114:633–636Google Scholar
  150. Nedbal L, Tichy L, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333Google Scholar
  151. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–29:877–886Google Scholar
  152. Negoro M, Shioji N, Ikuta Y, Makita T, Uchiumi M (1992) Growth characteristics of microalgae in high-concentration CO2 gas. Effects of culture medium trace components, and impurities thereon. Appl Biochem Biotechnol 34–35:681–692Google Scholar
  153. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653Google Scholar
  154. Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184Google Scholar
  155. Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149Google Scholar
  156. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506Google Scholar
  157. Oswald WJ (1969a) Current status of microalgae from wastes. Chem Eng Prog Symp Ser 65:87–92Google Scholar
  158. Oswald WJ (1969b) Growth characteristics of microalgae in domestic sewage: environmental effects on productivity. In: Proceedings of the IBP/PP technical meetingGoogle Scholar
  159. Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 305–328Google Scholar
  160. Oswald WJ, Benemann JR (1977) A critical analysis of bioconversion with microalgae. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 379–396Google Scholar
  161. Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. In: Umbreit WW (ed) Advances in applied microbiology, vol 2. Academic, New York, pp 223–262Google Scholar
  162. Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105Google Scholar
  163. Oswald WJ, Gotaas HB, Ludwig HI, Lynch V (1953) Algal symbiosis in oxidation ponds. Sewage Wastes 25:692–705Google Scholar
  164. Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Wastes 29:437–457Google Scholar
  165. Pascher A (1916) Ueber die Kreuzung einzelliger haploider Organismen: Chlamydomonas. Ber Deutsch Bot Ges 34:228–242Google Scholar
  166. Pascher A (1918) Ueber die beziehung der Reductionsteilung zur Medelschen Spaltung. Ber Deutsch Bot Ges 36:163–168Google Scholar
  167. Pesheva I, Kodama M, Dionisiosese ML, Miyachi S (1994) Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant Cell Physiol 35:379–387Google Scholar
  168. Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161Google Scholar
  169. Pirt SJ (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol 102:3–37Google Scholar
  170. Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Technol Biotechnol 33B:35–58Google Scholar
  171. Pratt R (1943) Studies on chlorella vulgaris. VI. Retardation of photosynthesis by a growth inhibitory substance from Chlorella vulgaris. Am J Bot 30:32–33Google Scholar
  172. Pratt R, Fong J (1940) Studies on chlorella vulgaris. II. Further evidence that chlorella cells form a growth-inhibiting substance. Am J Bot 27:431–436Google Scholar
  173. Pringsheim EG (1947) Pure cultures of algae. Cambridge University Press, Cambridge, p 119Google Scholar
  174. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293Google Scholar
  175. Quayale JR, Fuller RC, Benson AA, Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate photosynthesis. J Am Chem Soc 76:3610–3611Google Scholar
  176. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced Biofuel production. Eukaryot Cell 8:486–501Google Scholar
  177. Ramos de Ortega A, Roux JC (1986) Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10:141–156Google Scholar
  178. Richmond A (1976) Testing the economic feasibillity of industrial algal biomass production. Annual report for 1976. Institute for Desert Research, Sede Boquer campus, Ben-Gurion University of the Negev, Sede Boquer, IsraelGoogle Scholar
  179. Richmond A (ed) (1986) CRC Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 1–528Google Scholar
  180. Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121Google Scholar
  181. Richmond A (ed) (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, p 565Google Scholar
  182. Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264Google Scholar
  183. Richmond A, Vonshak A, Arad S (1980) Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 65–72Google Scholar
  184. Ricke FF, Gaffron H (1943) Flash saturation and reaction periods in photosynthesis. J Phys Chem 47:299–308Google Scholar
  185. Robinson LF, Morrison AW (1992) Biomass production apparatus. US Patent 5,137,828Google Scholar
  186. Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248Google Scholar
  187. Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 65:105–112Google Scholar
  188. Sasa T, Morimura Y, Tamiya H (1955) Seasonal variation of growth rate of various strains of unicellular algae under natural light- and temperature-conditions. J Gen Appl Microbiol 1:183–189Google Scholar
  189. Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth Res 68:215–224Google Scholar
  190. Schlipalius L (1991) The extensive commercial cultivation of Dunaliella salina. Bioresour Technol 38:241–243Google Scholar
  191. Selke W (1976) Equipment for growing algae. US Patent 3,959,923Google Scholar
  192. Senger H, Wolf H-J (1964) Eine automatische Verdünnungsanlage und ihre Anwendung zur Erziehlung homokontinuierlicher Chlorella-Kulturen. Arch Mikrobiol 48:81–94Google Scholar
  193. Setlik I, Komarek J, Prokes B (1967) Short account of the activities from 1960 to 1965. In: Necas J, Lhotsky O (eds) Annual report of the Laboratory of Experimental Algology and Department of Applied Algology for the year 1966. Knihtisk, Prague, pp 5–36Google Scholar
  194. Setlík I, Sust V, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 11:111–164Google Scholar
  195. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory: Golden, Colorado. NREL/TP-580-24190, pp 1–328Google Scholar
  196. Shelef G, Soeder CJ (eds) (1980) Algae biomass. Production and use. Elsevier/North Holland Biomedical Press, Amsterdam, p 852Google Scholar
  197. Shelef G, Schwartz M, Schechter H (1973) Prediction of photosynthetic biomass production in accelerated algal-bacterial wastewater treatment systems. In: Jenkins SJ (ed) Advances in water pollution research. Pergamon Press, Oxford, pp 181–189Google Scholar
  198. Shelef G, Sukenik A, Green M (1984) Microalgal harvesting and processing: a literature review. US Department of Energy: Golden Colorado. SERI/STR-231-2396, pp 1–65Google Scholar
  199. Shimamatsu H (2004) Mass production of Spirulina, an edible alga. Hydrobiologia 512:39–44Google Scholar
  200. Skill S (1998) Culture of microorganisms. PCT Patent Application 98/24879Google Scholar
  201. Soeder CJ (1976) Zur Verwendung von Mikroalgen fur Ernahrungszwecke. Naturwissenschaften 63:131–138Google Scholar
  202. Soeder CJ (1977) Primary production of biomass in freshwater with respect to microbial energy conversion. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon Press, Oxford, pp 59–68Google Scholar
  203. Soeder CJ (1978) Economic considerations concerning the autotrophic production of microalgae at the technical scale. Arch Hydrobiol Beih 11:259–273Google Scholar
  204. Soeder CJ (1986) An historical outline of applied algology. In: Richmond A (ed) CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, pp 25–41Google Scholar
  205. Sommer TR, D’Souza FML, Morrissy NM (1992) Pigmentation of adult rainbow trout, Oncorhynchus mykiss, using the green alga Haematococcus pluvialis. Aquaculture 106:63–74Google Scholar
  206. Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113Google Scholar
  207. Spoehr HA, Milner HW (1948) Chlorella as a source of food. Carnegie Institution Washington Yearbook 47:100–103Google Scholar
  208. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149Google Scholar
  209. Stengel E (1970) Anlagentypen und Verfahren der technischen Algenmassenproduktion. Ber Deutsch Bot Ges 83:589–606Google Scholar
  210. Suzuki K, Kawano S, Kuroiwa T (1994) Single mitochondrion in acidic hot-spring alga – Behaviour of mitochondria in Cyanidium caldarium and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). Phycologia 33:298–300Google Scholar
  211. Tamiya H (1957) Mass culture of algae. Ann Rev Plant Physiol 8:309–344Google Scholar
  212. Tanticharoen M, Bunnag B, Vonshak A (1993) Cultivation of Spirulina using secondary treated starch wastewater. Australas Biotechnol 3:223–226Google Scholar
  213. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, pp 178–214Google Scholar
  214. Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels – The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4:221–231Google Scholar
  215. Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159Google Scholar
  216. Tsukuda O, Kawahara T, Miyachi S (1977) Mass culture of Chlorella in Asian countries. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 363–365Google Scholar
  217. Uemura K, Anwaruzzaman S, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571Google Scholar
  218. Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green algae, Chlorococcum littorale. J Ferment Bioeng 86:38–43Google Scholar
  219. Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1) – highly effective photobioreactor system. Energy Convers Manage 38:S487–S492Google Scholar
  220. Uziel M (1978) Solar energy fixation and conversion with algal bacterial systems. PhD thesis, University of CaliforniaGoogle Scholar
  221. Vendlova J (1969) Les problèmes de la technologie de la culture des algues sur une grande échelle dans les installations au dehors. Annali Di Microbiologia 19:1–12Google Scholar
  222. Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae – the Indian experience. Department of Science & Technology, New Delhi, p 257Google Scholar
  223. Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 43–65Google Scholar
  224. Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185Google Scholar
  225. Wake LV (1983) Characteristics of resting state colonies of the alga Botryococcus braunii obtained from a bloom of the organism. Aust J Bot 31:605–614Google Scholar
  226. Wake LV (1984) Botryococcus braunii: the alga that initiated oil drilling in Australia. Search 15:158–161Google Scholar
  227. Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River reservoir. Biotechnol Bioeng 22:1637–1656Google Scholar
  228. Warburg O (1919) Über die Geschwindigkeit der Kohlensäure­zusammensetzung in lebenden Zellen. Biochem Z 100:230–270Google Scholar
  229. Wassink EC, Kok B, van Oorschot JLP (1953) The efficiency of light-energy conversion in Chlorella cultures as compared with higher plants. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 55–62Google Scholar
  230. Zaborski O (ed) (1988) Biohydrogen. Plenum Press, New YorkGoogle Scholar
  231. Zhang K, Kurano N, Miyachi S (1999) Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature. Appl Microbiol Biotechnol 52:781–786Google Scholar
  232. Zmora O, Richmond A (2004) Microalgae for aquaculture. Microalgae production for aquaculture. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 365–379Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Algae R&D Centre, School of Biological Sciences and BiotechnologyMurdoch UniversityMurdochAustralia

Personalised recommendations