Bio-Connections Between Southern Continents: What is and What is Not Possible to Conclude

  • Claudia P. Tambussi
  • Federico J. Degrange
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


Several advances have been made on the understanding of the biotic and environmental history of South America and Antarctica including the discovery of additional fossil sites coupled with progress from multidisciplinary analyses encompassing tectonic, isotopic, and radiochemical dating and molecular studies in modern forms. This also changed the knowledge about birds. Characters of the South American (SAn) avian fossil record are: (1) presence of taxa with uncertain affinities and the absence of Passeriformes during the Paleogene; (2) progressive and accelerated increase of species starting at the Neogene (Miocene); (3) dispersal of important extinct lineages (e.g. Phorusrhacidae, Teratornithidae) to North America after the connection between both Americas; (4) scarce endemic species that are members of clades with major diversification during the Neogene (e.g., Cariamiformes) or that inhabit mainly in the southern hemisphere (e.g., Anhingidae); (5) highly diverse living groups with limited (e.g., Passeriformes) or none (e.g., Apodiformes) fossil record whose stem groups are registered in Europe; (6) absence of the most extant SAn bird lineages; and (7) predominance of the zoophagous birds (>60 %) in all the associations (13) under scrutiny. Changes in diversity of the SAn birds during the Cenozoic could have been the result of the action of different processes (dispersal, vicariance, extirpations, or extinctions) that affect groups in different ways.


Aves Cenozoic South America Antarctica Paleobiogeography 


  1. Alvarenga HMF (1983) Uma ave ratite do Paleoceno brasileiro: bacia calcária de Itaboraí, estado do Rio de Janeiro, Brasil. Bol Mus Nac do Rio de Jan, Geol 41:1–47Google Scholar
  2. Alvarenga HMF (2010) Diogenornis fragilis Alvarenga, 1985, restudied: a South American ratite closely related to Casuariidae. In: 25th Int Ornit Cong, p 143Google Scholar
  3. Angst D, Buffetaut E (2012a) A large Phorusrhacid bird from the middle Eocene of France. In: Worthy TH, Göhlich UB (eds) Abstracts of the 8th international meeting of the society of the Avian Paleontology and evolutionGoogle Scholar
  4. Angst D, Buffetaut E (2012b) A large phorusrhacid from the middle Eocene of France and its palaeobiogeographical implications. 26 Jor Arg Pal Vert, Abstracts available in CDGoogle Scholar
  5. Barker FK (2007) Avifaunal interchange across the Panamanian isthmus: insights from Campylorhynchus wrens. Biol J Linn Soc Lond 9:687–702CrossRefGoogle Scholar
  6. Barreda V, Bellosi E (2003) Ecosistemas terrestres del Mioceno temprano de la Patagonia central: primeros avances. Rev Mus Arg Cienc Nat 5:125–134Google Scholar
  7. Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-Early Neogene: origin of arid adapted floras. Bot Rev 73:31–50CrossRefGoogle Scholar
  8. Blisniuk PM, Ster LA, Chamberlain CP, Idleman B, Zeitler PK. (2005) Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes. Earth Planet Sci lett 230:125–142Google Scholar
  9. Bourdon E, de Ricqlès A, Cubo J (2009) A new transantarctic relationship: morphological evidence for a Rheidae–Dromaiidae–Casuariidae clade (Aves, Palaeognathae, Ratitae). Zool J Linn Soc 156:641–663CrossRefGoogle Scholar
  10. Briggs JC (2003) Fishes and birds: Gondwana life rafts reconsidered. Syst Biol 52:548–553Google Scholar
  11. Burns K, Racicot R (2009) Molecular phylogenetics of a clade of lowland tanagers: implications of the avian participations in the Great American Interchange. Auk 126:635–648CrossRefGoogle Scholar
  12. Cenizo MM, Agnolín FL (2010) The southernmost records of Anhingidae and a new basal species of Anatidae (Aves) from the lower–middle Miocene of Patagonia, Argentina. Alcheringa 34:1–22CrossRefGoogle Scholar
  13. Chacón J, Camargo de Assis M, Meerow A, Wand Renner SS (2012) From east Gondwana to central America: historical biogeography of the Alstroemeriaceae. J Biogeogr. doi: 10.1111/j.1365-2699.2012.02749.x
  14. Cracraft J (2001) Avian evolution, Gondwana biogeography and the Cretaceous-tertiary mass extinction event. Proc Royal Soc London 268:459–469CrossRefGoogle Scholar
  15. Crisci J, Cigliano MM, Morrone J, Roig S (1991) Historial biogeography of southern south America. Syst Zool 40:152–171CrossRefGoogle Scholar
  16. Cubo J (2003) Evidence for speciational change in the evolution of ratites (Aves: Palaeognathae). Biol J Linn Soc 80:99–106CrossRefGoogle Scholar
  17. Dacosta J, Klicka J (2008) The Great American Interchange in birds: a plylogenetic perspective with the genus Trogon. Mol Ecol 17:1328–1343CrossRefGoogle Scholar
  18. Davies SJJF (2002) Ratites and tinamous: Tinamidae, Rheidae, Dromaiidae, Casuariidae, Apterygidae, Struthionidae. Oxford University Press, OxfordGoogle Scholar
  19. de Oliveira FB, Molina EC, Marroig G (2008) Paleogeography of the South Atlantic: a route for primates and rodents into the new world? In: Garber PA, Estrada A, Strier KB (eds) South American primates: comparative perspectives in the study of behavior, ecology, and conservation. Springer, New YorkGoogle Scholar
  20. Degrange FJ (2012) Morfología del cráneo y complejo apendicular posterior de aves fororracoideas: implicancias en la dieta y modo de vida. Dissertation, Universidad Nacional de La PlataGoogle Scholar
  21. Degrange F, Tambussi C, Iglesias A, Zamuner A, Wilf P (2006) Primer registro de Aves para el Daniano. Ameghiniana 43:13RGoogle Scholar
  22. Eberhard J, Bermingham E (2004) Phylogeny and biogeography of the amazona ochrocephala (Aves: Psittacidae) complex. Auk 121:318–332Google Scholar
  23. Emslie S (1988) A early condor-like vulture from North America. Auk 105:529–535Google Scholar
  24. Ericson PGP, Cooper A, Christidis L, Irestedt M, Jackson J, Johansson US, Norman J (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 264:235–241CrossRefGoogle Scholar
  25. Gheerbrant E, Rage J (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeog Palaeoecol 24:224–246CrossRefGoogle Scholar
  26. Graham A (2005) The Andes: a geological overview from a biological perspective. Ann Miss Bot Gard 96:371–385CrossRefGoogle Scholar
  27. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:1156–1167CrossRefGoogle Scholar
  28. Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski JL, Hackett SJ, Han K, Timball RT, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Steadman DW, Steppan SJ, Witti CC, Yuri T (2008) Phylogenomic evidence for multiple losses of flight in ratite birds. PNAS 105:13462–13467CrossRefGoogle Scholar
  29. Hawking B, Diniz-Flho FA, Jaramillo C, Soeller S (2006) Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient to new world birds. J Biogeog 33: 770–780Google Scholar
  30. Hawkins BA, Diniz-Filho JAF, Soeller SA (2005) Water links the historical and contemporary components of the Australian bird diversity gradient. J Biogeogr 32:1035–1042CrossRefGoogle Scholar
  31. Hunn C, Upchurch P (2001) The Importance of time/space in diagnosing the causality of phylogenetic events: towards a “chronobiogeographical” paradigm? Syst Biol 50:391–407Google Scholar
  32. Irestedt M, Fjelds J, Johansson UF, Ericson PGP (2002) Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes). Mol Phylog Evol 23:499–512CrossRefGoogle Scholar
  33. Kappeler PM (2000) Lemur origins: rafting by groups of hibernators? Folia Primatol 71:422–425CrossRefGoogle Scholar
  34. Laurin M, Gussekloo SWS, Marjanović D, Legendre L, Cubo J (2012) Testing gradual and speciational models of evolution in extant taxa: the example of ratites. J Evol Biol 25:293–303CrossRefGoogle Scholar
  35. Mayr G (2007) The birds from the Paleocene fissure filling of Walbeck (Germany). J Vert Paleontol 27:394–408Google Scholar
  36. Mayr G (2009) Paleogene Fossil Birds. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  37. Mayr G, Alvarenga HMF, Clarke J (2011) An Elaphrocnemus-like landbird and other avian remains from the late Paleocene of Brazil. Acta Palaeontol Pol 56:679–684CrossRefGoogle Scholar
  38. Montes C, Bayona G, Cardona A, Buchs DM, Silva CA, Morón S, Hoyos N, Ramírez DA, Jaramillo CA, Valencia V (2012) Arc-continent collision and orocline formation: closing of the central American seaway. J Geophys Res. doi: 10.1029/2011JB008959 Google Scholar
  39. Mourer Chauviré C (1981) Premire indication de la présence de Phorusrhacides, famille d′oiseaux géants d′Amerique du Sul, dans le Tertiaire européen: Ameghinornis (Aves, Ralliformes) des Phosphorites du Quercy. Fr Geobios 14:637–647CrossRefGoogle Scholar
  40. Mourer-Chauviré C, Tabuce R, Mahboubi M, Adaci M, Bensalah M (2011) A Phororhacoid bird from the Eocene of Africa. Naturwissenschaften. doi: 10.1007/s00114-011-0829-5 Google Scholar
  41. Ortiz Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of suthern South America during the Cenozoic. J Arid Environ 66:498–532CrossRefGoogle Scholar
  42. Pascual R, Carlini AA, Bond M, goin FJ (2002) Mamíferos cenozoicos. In: Haller MJ (ed) Geologia y Recursos Naturales de Santa Cruz. Asociación Geológica Argentina, Buenos AiresGoogle Scholar
  43. Pérez-Emán JL (2005) Molecular phylogenetics and biogeography of the neotropical redstarts (Myioborus; Aves, Parulinae). Mol Phylog Evol 37:511–528CrossRefGoogle Scholar
  44. Peters DS (1987) Ein “Phorusrhacidae” aus dem Mittel-Eozan von Messel (Aves, Gruiformes, Cariamae). Doc Lab Géol Lyon 99:71–87Google Scholar
  45. Samonds K, Godfreyb L, Alic J, Goodmand S, Vencesf M, Sutherlandb M, Irwing M, Krause D (2012) Spatial and temporal arrival patterns of Madagascar’s vertebrate fauna explained by distance, ocean currents, and ancestor type. PNAS. doi: 10.1073/pnas.1113993109
  46. San Martin I, Ronquist F (2004) Southern hemisphere biogeography inferred by event-based models: plant vesus animal patterns. Syst Biol 53:216–243CrossRefGoogle Scholar
  47. Stucchi M, Emslie SD (2005) Un Nuevo Cóndor (Ciconiiformes, Vulturidae) del Mioceno Tardío-Plioceno temprano de la Formación Pisco, Perú. The Condor 107:107–113CrossRefGoogle Scholar
  48. Tambussi CP (2011) Paleoenvironmental and faunal inferences based upon the avian fossil record of Patagonia and Pampa: what works and what does not. Biol J Linn Soc 103:458–474CrossRefGoogle Scholar
  49. Tambussi CP, Noriega JI (1999) The fossil record of condors (Aves, Vulturidae) of Argentina. Smith Cont Pal 89:171–184Google Scholar
  50. Tambussi CP, Noriega JI, Gazdzicki A, Tatur A, Reguero MA, Vizcaíno SF (1994) Ratite bird from the Paleogene La Meseta formation, Seymour Island, Antarctica. Pol Polar Res 15:15–20Google Scholar
  51. Tambussi CP, Degrange FJ, Reguero MA, Marenssi SA, Santillana SN (2012) Antarctic Eocene loon (Gaviiformes): last refuge of survivor of a long typically Holarctic lineage? SCAR open science conference (OSC), Portand. Accessed 1 May 2012
  52. Tonni EP, Noriega JI (1998) Los cóndores (Ciconiformes, Vulturidae) de la región pampeana de la Argentina durante el Cenozoico tardío: distribución, interacciones y extinciones. Ameghiniana 35:141–150Google Scholar
  53. Tonni EP, Tambussi CP (1988) Un nuevo Psilopterinae (Aves: Ralliformes) del Mioceno tardío de la provincia de Buenos Aires, República Argentina. Ameghiniana 25:155–160Google Scholar
  54. Vizcaíno SF, Bargo MS, Kay RF, Milne N (2006) The armadillos (Mammalia, Xenarthra, Dasypodidae) of the Santa Cruz Formation (early-middle Miocene): an approach to their paleobiology. Palaeogeog Palaeoecol 237:255–269CrossRefGoogle Scholar
  55. Vuilleumier F (1985) Fossil and recent avifaunas and the inter American exchange. In: Stehli FG, Webb SD (eds) The great American biotic interchange. Plenum, New YorkGoogle Scholar
  56. Weir JT, Bermingham E, Miller MJ, Klicka J, González MA (2008) Phylogeography of a morphologically diverse neotropical montane species, the common bush-tanager (Chlorospingus ophthalmicus). Mol Phylog Evol 47:650–664CrossRefGoogle Scholar
  57. Weir J, Berminghamb E, Schluter D (2009) The great American biotic interchange in birds. PNAS 106:21737–21742CrossRefGoogle Scholar
  58. Woodburne MO, Case JA (1996) Dispersal, vicariance, and the late Cretaceous to early tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3:121–161CrossRefGoogle Scholar
  59. Zachos J, Shackleton NJ, Revenaugh JS, Pälike H, Flower BP (2001) Climate response to orbital forcing across the Oligocene-Miocene. Science 292:274–278CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.División Paleontología VertebradosMuseo de La PlataLa PlataArgentina
  2. 2.CICTERRA/CONICET-UNCCórdobaArgentina

Personalised recommendations