Advertisement

Patient-Specific Surgery Planning for the Fontan Procedure

  • Christopher M. Haggerty
  • Lucia Mirabella
  • Maria Restrepo
  • Diane A. de Zélicourt
  • Jarek Rossignac
  • Fotis Sotiropoulos
  • Thomas L. Spray
  • Kirk R. Kanter
  • Mark A. Fogel
  • Ajit P. Yoganathan

Abstract

For children born with single ventricle heart defects, the Fontan procedure (right heart bypass via connection of caval veins to pulmonary arteries) is the palliative procedure of choice. Previous research has demonstrated strong coupling between the geometric characteristics of the surgical construct and the resulting patient-specific hemodynamics, which may relate to the numerous chronic morbidities seen in these patients. The combination of medical imaging, computer graphics and computational fluid simulations has introduced a powerful new paradigm for these procedures: providing the means to model the various options and evaluate the resulting characteristics. This paper details these methodologies, their application to planning interventions, and their contributions to generalizable knowledge of Fontan hemodynamics.

Keywords

Computational Fluid Dynamic Cardiovascular Magnetic Resonance Inferior Vena Cava Azygos Vein Fontan Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Heart, Lung, and Blood Institute through Grants HL67622 and HL098252, and through American Heart Association Pre-Doctoral Fellowships.

References

  1. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695 Google Scholar
  2. de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. J Thorac Cardiovasc Surg 111:502–513 CrossRefGoogle Scholar
  3. de Zélicourt DA, Pekkan K, Wills L, Kanter KR, Forbess J, Sharma S, Fogel MA, Yoganathan AP (2005) In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Ann Thorac Surg 79:2094–2102 CrossRefGoogle Scholar
  4. de Zélicourt DA, Ge L, Wang C, Sotiropoulos F, Gilmanov A, Yoganathan AP (2009) Flow simulations in arbitrarily complex cardiovascular anatomies—an unstructured Cartesian grid approach. Comput & Fluids 38:1749–1762 zbMATHCrossRefGoogle Scholar
  5. de Zélicourt DA, Haggerty CM, Sundareswaran KS, Whited BS, Rossignac JR, Kanter KR, Gaynor JW, Spray TL, Sotiropoulos F, Fogel MA, Yoganathan AP (2011) Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J Thorac Cardiovasc Surg 141:1170–1177 CrossRefGoogle Scholar
  6. Duncan BW, Desai S (2003) Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann Thorac Surg 76:1759–1766 CrossRefGoogle Scholar
  7. Fogel MA, Weinberg PM, Chin AJ, Fellows KE, Hoffman EA (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221 CrossRefGoogle Scholar
  8. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248 CrossRefGoogle Scholar
  9. Frakes DH, Conrad CP, Healy TM, Monaco JW, Fogel MA, Sharma S, Smith MJ, Yoganathan AP (2003) Application of an adaptive control grid interpolation technique to morphological vascular reconstruction. IEEE Trans Biomed Eng 50:197–206 CrossRefGoogle Scholar
  10. Frakes DH, Smith MJ, Parks WJ, Sharma S, Fogel MA, Yoganathan AP (2005) New techniques for the reconstruction of complex vascular anatomies from MRI images. J Cardiovasc Magn Reson 7:425–432 CrossRefGoogle Scholar
  11. Gersony DR, Gersony WM (2003) Management of the postoperative Fontan patient. Prog Ped Cardiol 17:73–79 CrossRefGoogle Scholar
  12. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207:457–492 zbMATHCrossRefGoogle Scholar
  13. Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37:2153–2169 CrossRefGoogle Scholar
  14. Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38:1129–1141 CrossRefGoogle Scholar
  15. Mair DD, Puga FJ, Danielson GK (2001) The Fontan procedure for tricuspid atresia: early and late results of a 25-year experience with 216 patients. J Am Coll Cardiol 37:933–939 CrossRefGoogle Scholar
  16. Markl M, Geiger J, Kilner PJ, Foll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A (2011) Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 39:206–212 CrossRefGoogle Scholar
  17. Migliavacca F, Dubini G, Bove E, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:803–813 CrossRefGoogle Scholar
  18. Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval MR, Bove E (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39:1010–1020 CrossRefGoogle Scholar
  19. Pekkan K, Whited B, Kanter KR, Sharma S, de Zélicourt DA, Sundareswaran KS, Frakes DH, Rossignac J, Yoganathan AP (2008) Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med Biol Eng Comput 46:1139–1152 CrossRefGoogle Scholar
  20. Pennati G, Corsini C, Cosentino D, Hsia TY, Luisi VS, Dubini G, Migliavacca F (2011) Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances is a critical issue for virtual surgical planning. Interface Focus 1:297–307 CrossRefGoogle Scholar
  21. Sharma S, Goudy S, Walker P, Panchal S, Ensley A, Kanter KR, Tam V, Fyfe D, Yoganathan AP (1996) In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol 27:1264–1269 CrossRefGoogle Scholar
  22. Sundareswaran KS, de Zélicourt DA, Sharma S, Kanter KR, Spray TL, Rossignac J, Sotiropoulos F, Fogel MA, Yoganathan AP (2009a) Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc Imaging 2:1024–1030 CrossRefGoogle Scholar
  23. Sundareswaran KS, Frakes DH, Fogel MA, Soerensen D, Oshinski JN, Yoganathan AP (2009b) Optimum fuzzy filters for phase-contrast magnetic resonance imaging segmentation. J Magn Reson Imaging 29:155–165 CrossRefGoogle Scholar
  24. Sundareswaran KS, Haggerty CM, de Zélicourt DA, Dasi LP, Pekkan K, Frakes DH, Powell AJ, Kanter KR, Fogel MA, Yoganathan AP (2012) Visualization of flow structures in Fontan patients using three-dimensional phase contrast magnetic resonance imaging. J Thorac Cardiovasc Surg 143:1108–1116 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christopher M. Haggerty
    • 1
  • Lucia Mirabella
    • 1
  • Maria Restrepo
    • 1
  • Diane A. de Zélicourt
    • 1
  • Jarek Rossignac
    • 2
  • Fotis Sotiropoulos
    • 3
  • Thomas L. Spray
    • 4
  • Kirk R. Kanter
    • 5
  • Mark A. Fogel
    • 4
  • Ajit P. Yoganathan
    • 1
  1. 1.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.College of ComputingGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  5. 5.Children’s Healthcare of AtlantaAtlantaUSA

Personalised recommendations