Advertisement

Activation Models for the Numerical Simulation of Cardiac Electromechanical Interactions

  • Ricardo Ruiz-Baier
  • Davide Ambrosi
  • Simone Pezzuto
  • Simone Rossi
  • Alfio Quarteroni

Abstract

This contribution addresses the mathematical modeling and numerical approximation of the excitation-contraction coupling mechanisms in the heart. The main physiological issues are preliminarily sketched along with an extended overview to the relevant literature. Then we focus on the existing models for the electromechanical interaction, paying special attention to the active strain formulation that provides the link between mechanical response and electrophysiology. We further provide some critical insight on the expected mathematical properties of the model, the ability to provide physiological results, the accuracy and computational cost of the numerical simulations. This chapter ends with a numerical experiment studying the electromechanical coupling on the anisotropic myocardial tissue.

Keywords

Active Strain Ordinary Differential Equation Model Multiplicative Decomposition Force Balance Equation Parallel Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support by the European Research Council through the grant ‘Mathcard, Mathematical Modelling and Simulation of the Cardiovascular System’, ERC-2008-AdG 227058 is gratefully acknowledged.

References

  1. Ambrosi D, Pezzuto S (2012) Active strain vs. active stress in mechanobiology: constitutive issues. J Elast 107:121–199 MathSciNetCrossRefGoogle Scholar
  2. Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J Appl Math 71:605–621 MathSciNetzbMATHCrossRefGoogle Scholar
  3. Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol, Heart Circ Physiol 295:H610–H618 CrossRefGoogle Scholar
  4. Bueno-Orovio A, Cherry EM, Fenton FH (2008) Minimal model for human ventricular action potential in tissue. J Theor Biol 253:544–560 CrossRefGoogle Scholar
  5. CellML (2000) (Language for storing and exchange of computer-based mathematical models). www.cellml.org
  6. Chapelle D, Fernandez MA, Gerbeau JF, Moireau P, Sainte-Marie J, Zemzemi N (2009) Numerical simulation of the electromechanical activity of the heart. Lect Notes Comput Sci 5528:357–365 CrossRefGoogle Scholar
  7. Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573 CrossRefGoogle Scholar
  8. Colli Franzone P, Pavarino LF (2004) A parallel solver for reaction-diffusion systems in computational electro-cardiology. Math Models Methods Appl Sci 14:883–911 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Continuity (2005) (A problem-solving environment for multi-scale modeling in bioengineering and physiology). www.continuity.ucsd.edu/Continuity
  10. Costa KD, Holmes JW, McCulloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond A 359:1233–1250 zbMATHCrossRefGoogle Scholar
  11. Evangelista A, Nardinocchi P, Puddu PE, Teresi L, Torromeo C, Varano V (2011) Torsion of the human left ventricle: Experimental analysis and computational modelling. Prog Biophys Mol Biol 107:112–121 CrossRefGoogle Scholar
  12. Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Comput Mech 45:227–243 MathSciNetzbMATHCrossRefGoogle Scholar
  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544 Google Scholar
  14. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond A 367:3445–3475 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Iribe G, Helmes M, Kohl P (2007) Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol, Heart Circ Physiol 292:H1487–H1497 CrossRefGoogle Scholar
  16. Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left ventricular epicardial myocyte. Biophys J 87:1507–1525 CrossRefGoogle Scholar
  17. Kerckhoffs RCP, Healy SN, Usyk TP, McCulloch AD (2006) Computational methods for cardiac electromechanics. Proc IEEE 94:769–783 CrossRefGoogle Scholar
  18. Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled parallel electromechanical model of the heart. Int J Numer Methods Biomed Eng 28:72–86 MathSciNetzbMATHCrossRefGoogle Scholar
  19. Land S, Niederer SA, Smith NP (2012) Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Trans Biomed Eng 59:1219–1228 CrossRefGoogle Scholar
  20. Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane-wave analysis. J Appl Phys 38:17–27 Google Scholar
  21. LifeV (2001) (A parallel finite element library). www.lifev.org
  22. Luo C, Rudy Y (1991) A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ Res 68:1501–1526 CrossRefGoogle Scholar
  23. Menzel A, Waffenschmidt T (2009) A micro-sphere-based remodelling formulation for anisotropic biological tissues. Philos Trans R Soc Lond A 367:3499–3523 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Murtada S, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9:749–762 CrossRefGoogle Scholar
  25. Nardinocchi P, Teresi L (2007) On the active response of soft living tissues. J Elast 88:27–39 MathSciNetzbMATHCrossRefGoogle Scholar
  26. Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast 61:113–141 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522 CrossRefGoogle Scholar
  28. Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac tissue. Int J Numer Methods Biomed Eng 28:52–71 MathSciNetzbMATHCrossRefGoogle Scholar
  29. Pathmanathan P, Whiteley JP (2009) A numerical method for cardiac mechanoelectric simulations. Ann Biomed Eng 37:860–873 CrossRefGoogle Scholar
  30. Pathmanathan P, Chapman SJ, Gavaghan D, Whiteley JP (2010) Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q J Mech Appl Math 63:375–399 MathSciNetzbMATHCrossRefGoogle Scholar
  31. Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osbourne JM, Walter A, Chapman SJ, Garny A, van Leeuwen IMM, Maini PK, Rodriguez B, Waters SL, Whiteley JP, Byrne HM, Gavaghan D (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180:2452–2471. www.cs.ox.ac.uk/chaste zbMATHCrossRefGoogle Scholar
  32. Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799–811 CrossRefGoogle Scholar
  33. Reumann M, Fitch BG, Rayshubskiy A, Keller D, Seemann G, Dossel O, Pitman MC, Rice JJ (2009) Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations. Proc IEEE 09:2795–2798 Google Scholar
  34. Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95:2368–2390 CrossRefGoogle Scholar
  35. Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41:743–757 CrossRefGoogle Scholar
  36. Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2011) Active strain and activation models in cardiac electromechanics. In Brenn G, Holzapfel GA, Schanz M, Steinbach O (eds) Proc Appl Math Mech, vol 11, pp 119–120 Google Scholar
  37. Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int J Numer Methods Biomed Eng 28:761–788 CrossRefGoogle Scholar
  38. Rudy Y, Silva JR (2006) Computational biology in the study of cardiac ion channels and cell electrophysiology. Q Rev Biophys 39:57–116 CrossRefGoogle Scholar
  39. Sermesant M (2003) Modèle électromécanique du coeur pour l’analyse d’image et la simulation. PhD Thesis, Université de Nice Sophia Antipolis, France Google Scholar
  40. Smerup M, Nielsen E, Agger P, Frandsen J, Vestergaard-Poulsen P, Andersen J, Nyengaard J, Pedersen M, Ringgaard S, Hjortdal V, Lunkenheimer PP, Anderson RH (2009) The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat Rec 292:1–11 CrossRefGoogle Scholar
  41. Smith NP, Nickerson DP, Crampin EJ, Hunter PJ (2004) Multiscale computational modelling of the heart. Acta Numer 13:371–431 MathSciNetCrossRefGoogle Scholar
  42. Taber LA, Perucchio R (2000) Modeling heart development. J Elast 61:165–197 MathSciNetzbMATHCrossRefGoogle Scholar
  43. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol, Heart Circ Physiol 286:H1573–H1589 CrossRefGoogle Scholar
  44. Tung L (1978) A bi-domain model for describing ischemic myocardial D-C potentials. PhD Thesis, MIT, Cambridge, MA Google Scholar
  45. Usyk TP, Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elast 61:143–164 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ricardo Ruiz-Baier
    • 1
  • Davide Ambrosi
    • 2
  • Simone Pezzuto
    • 2
  • Simone Rossi
    • 1
  • Alfio Quarteroni
    • 1
    • 2
  1. 1.CMCS-MATHICSE-SBEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.MOX—Politecnico de MilanoMilanoItaly

Personalised recommendations