Skip to main content

Cardiovascular Tissue Damage: An Experimental and Computational Framework

  • Conference paper
  • 2320 Accesses

Abstract

Tissue overload during medical procedures can lead to severe complications. This chapter presents an experimental and computational framework to define and predict damage due to mechanical loading and applies this framework to arterial clamping. An extension of the Holzapfel-material model for arterial tissue is presented, incorporating smooth muscle cell activation and damage to the different constituents. It is implemented in a finite element framework and used to simulate arterial clamping and subsequent damage evaluation through an isometric contraction test. These simulations are compared to actual experiments and repeated for a different clamp design, thereby demonstrating the capability of the framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  Google Scholar 

  • Balzani D, Schröder J, Gross D (2006) Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater 2:609–618

    Article  Google Scholar 

  • Balzani D, Schröder J, Gross D (2007) Numerical simulation of residual stresses in arterial walls. Comput Mater Sci 39:117–123

    Article  Google Scholar 

  • Böl M, Abilez OJ, Assar AN, Zarins CK, Kuhl E (2012) In vitro/in silico characterization of active and passive stresses in cardiac muscle. Int J Multiscale Comput Eng 10:171–188. doi:10.1615/IntJMultCompEng.2011002352

    Article  Google Scholar 

  • Callera GE, Varanda WA, Bendhack LM (2000) Impaired relaxation to acetylcholine in 2K-1C hypertensive rat aortas involves changes in membrane hyperpolarization instead of an abnormal contribution of endothelial factors. Gen Pharmacol 34:379–389

    Article  Google Scholar 

  • Famaey N, Sommer G, Vander Sloten J, Holzapfel GA (2012a) Arterial clamping: finite element simulation and in vivo validation. J Mech Behav Biomed Mat 12:107–118

    Article  Google Scholar 

  • Famaey N, Vander Sloten J, Kuhl E (2012b) A three-constituent damage model for arterial clamping. Biomech Model Mechanobiol (in press)

    Google Scholar 

  • Famaey N, Verbeken E, Vinckier S, Willaert B, Herijgers P, Vander Sloten J (2010) In vivo soft tissue damage assessment for applications in surgery. Med Eng Phys 32:437–443

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  • Gupta V, Reddy NP, Batur P (1997) Forces in laparoscopic surgical tools. Presence 6:218–228

    Google Scholar 

  • Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol 254:C99–106

    Google Scholar 

  • Health Grades (2012) Patient safety in American hospitals. Health grades quality study. Available at www.healthgrades.com Accessed April 2012

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Mahnken R, Kuhl E (1999) Parameter identification of gradient enhanced damage models with the finite element method. Eur J Mech A, Solids 18:819–835

    Article  MATH  Google Scholar 

  • Matsumoto T, Hayashi K (1994) Mechanical and dimensional adaptation of rat aorta to hypertension. J Biomech Eng 116:278–283

    Article  Google Scholar 

  • Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44:87–98

    Article  Google Scholar 

  • Megens RT, oude Egbrink MG, Merkx M, Slaaf DW, van Zandvoort MA (2008) Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. J Biomed Opt 13:044022

    Article  Google Scholar 

  • Murtada S-I, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9:749–762

    Article  Google Scholar 

  • O’Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R, Dalman RL, Zarins CK, Denk W, Taylor CA (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biology 27:171–181

    Article  Google Scholar 

  • Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA (2012) Determination of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 9:1275–1286

    Article  Google Scholar 

  • Simo J, Ju J (1987) Strain- and stress-based continuum damage models. Int J Solids Stuct 23:821–840

    Article  MATH  Google Scholar 

  • Stålhand J (2009) Determination of human arterial wall parameters from clinical data. Biomech Model Mechanobiol 8:141–148

    Article  Google Scholar 

  • Stålhand J, Klarbring A, Holzapfel GA (2011) A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J Theor Biol 268:120–130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele Famaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Famaey, N., Kuhl, E., Holzapfel, G.A., Vander Sloten, J. (2013). Cardiovascular Tissue Damage: An Experimental and Computational Framework. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics