Skip to main content

Endophytic Nitrogen-Fixing Bacteria as Biofertilizer

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 11))

Abstract

Nitrogen is the most limiting nutritional factor for the growth of plants. Since plants cannot reduce atmospheric N2, they require exogenously fixed nitrogen for growth and development. Atmospheric N2 must be first reduced to ammonia to be used by plants. In practice, chemical N fertilizers are used to provide nitrogen nutrition to plants. However, manufacture and use of N fertilizers are associated with environmental hazards that include release of greenhouse gases at the time of manufacture, as well as contamination of underground and surface water due to leaching out of nitrates. Moreover, manufacture of chemical fertilizers requires non-renewable resources like coal and petroleum products. Excess and continuous use of chemical fertilizers to improve the yield of commercial crops has negative effect on soil fertility and reduces their agricultural sustainability. All these concerns necessitate the search for an alternative strategy that can provide nitrogen nutrition to the plants in an efficient and sustainable manner. Here biological nitrogen fixation has immense potential and can be used as an alternate to chemical fertilizers. Biological nitrogen fixation has been reported to be exclusively carried out by few members of the prokaryotic organisms. Biological nitrogen fixation is a process where atmospheric N2 is reduced to NH3. This process is catalyzed by microbial enzyme nitrogenase. Microorganisms having the capacity to fix atmospheric N2 can be used as efficient biofertilizer.

In this chapter, we review application, properties, ecology, and advances in biology of nitrogen fixing bacteria with reference to endophytic bacteria that colonize the interior of plant without exerting any substantive harm to their host plant. Nitrogen-fixing endophytic bacteria have edge over its rhizospheric counterparts because, being sheltered inside plant tissues, they face less competition and can make available the fixed nitrogen directly to plants. Moreover, the partial pressure of oxygen inside the plant tissue is more acquiescent for efficient nitrogen fixation. Nitrogen fixing endophytic bacteria have been isolated from several plant species and found to contribute upto 47% of nitrogen derived from air, which in turn enhance plant growth. Nitrogen fixing ability of bacteria can be evaluated by total nitrogen difference method, acetylene reduction assay, analysis of nitrogen solutes in xylem and other plant parts and N-Labeling Methods. Furthermore, molecular approaches such as amplification, analysis of nitrogen-fixing genes (nif genes), and qualitative and quantitative estimation of their products can be used for evaluation of nitrogen fixing ability of the bacteria.In addition to nitrogen-fixation ability, these bacteria can influence plant growth through one or more properties. These include production of phytohormones, siderophores, induced systemic tolerance through production of 1-aminocyclopropane-1-carboxylase deaminase, induced systemic resistance and antagonistic activities. The make-up of endophytic bacterial communities depends on various factors such as soil type, soil composition, soil environment, plant genotype and physiological status, bacterial colonization traits, and agricultural management regimes. Colonization and abundance of different bacterial species varies widely with host plants. Endophytic bacterial community can be analyzed employing stable isotope probing as well as various modern molecular approaches which are based on analysis of 16S ribosomal deoxyribonucleic acid (DNA), gene encoding products for nitrogen fixation and repetitive DNAs. Moreover, metagenomic approaches allow estimation and analysis of unculturable bacteria at genomic as well as functional genomic level. Colonization process of an endophytic bacterium involves various steps which include migration towards root surface, attachment and microcolony formation on plant surface, distribution along root and growth and survival of the population inside plant tissue. Ongoing progress towards in-depth analysis of genomic and whole protein profile of some of the potential endophytic bacteria such as Azoarcus sp., Gluconoacetobacter diazotrophicus, Herbaspirillum seropedicae, Serratia marcesens can help understand mechanism involved in plant-endophyte interaction which in turn will be deterministic in use of suitable formulations of endophytic bacteria to be used as biofertilizer for sustainable agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CO2 :

Carbon dioxide

DNA:

Deoxyribonucleic acid

gfp :

gfp is a gene which encodes for green fluorescent protein

gus :

gus is a gene which encodes for β-glucuronidase

HCN:

Hydrogen cyanide

mRNA:

messenger RNA which is used as template for protein synthesis.

N:

Nitrogen

N2 :

Atmospheric Nitrogen

NO2 :

Nitric oxide

nifHDK :

These are set of genes which encodes structural part of nitrogenase, an enzyme which catalyzes nitrogen fixation.

PCR:

Polymerase chain reaction

PGPB:

Plant growth promoting bacteria

r DNA:

ribosomal DNA encodes for rRNA, a structural component of ribosome

References

  • Abeysingha NS, Weerarathne CS (2010) A preliminary study on quantification of biological nitrogen fixation in sugarcane grown in Sevanagala in Sri Lanka. J Nat Sci Found Sri Lanka 38:207–210. doi:10.4038/jnsfsr.v38i3.2311

    CAS  Google Scholar 

  • Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M (2010) Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol 26:555–560. doi:10.1007/s11274-009-0191-3

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2010) Role of Plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, Berlin/Heidelberg, pp 157–196. doi:10.1007/978-3-642-13612-2_7

    Chapter  Google Scholar 

  • Ali SKZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55. doi:10.1007/s00374-009-0404-9

    Article  CAS  Google Scholar 

  • America AHP, Cordewener JHG (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749. doi:10.1002/pmic.200700694

    Article  PubMed  CAS  Google Scholar 

  • Andreote FD, Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwen 97:389–399. doi:10.1007/s10482-010-9421-9

    Article  Google Scholar 

  • Araujo WL, Marcon J, Maccheroni WJ, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914. doi:10.1128/AEM.68.10.4906-4914.2002

    Article  PubMed  CAS  Google Scholar 

  • Audenaert K, Pattery T, Comelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156. doi:10.1094/MPMI.2002.15.11.1147

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  PubMed  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491. doi:10.1007/s003740050027

    Article  Google Scholar 

  • Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhaes V, Alqueres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simao T, Macedo J, Valadao A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza FG, Flores VMQ, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rossle SC, Urmenyi T, Pereira AR, Silva R, Rondinelli E, von Kruger W, Martins O, Baldani JI, Ferreira PC (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450. doi:10.1186/1471-2164-10-450

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent Pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. doi:10.1007/s00253-008-1567-2

    Article  PubMed  CAS  Google Scholar 

  • Bilal R, Rasul G, Arshad M, Malik KA (1993) Attachment, colonization and proliferation of Azospirillum brasilense and Enterobacter spp. on root surface of grasses. World J Microbiol Biotechnol 9:63–69. doi:10.1007/BF00656519

    Article  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533. doi:10.1094/MPMI-20-5-0526

    Article  PubMed  CAS  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JM, Rumjanek NG, Jansen J, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Boil Rev 74:529–551. doi:10.1128/MMBR.00033-10

    Article  CAS  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. doi:10.1007/s00253-004-1696-1

    Article  PubMed  CAS  Google Scholar 

  • Burbano CS, Reinhold-Hurek B, Hurek T (2010) LNA-substituted degenerate primers improve detection of nitrogenase gene transcription in environmental samples. Environ Microbiol Rep 2:251–257. doi:10.1111/j.1758-2229.2009.00107.x

    Article  CAS  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry. Science Publishers, Plymouth, pp 29–250

    Google Scholar 

  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. Strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 21:244–259. doi:10.1094/MPMI-21-2-0244

    Article  PubMed  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    PubMed  CAS  Google Scholar 

  • Cazorla FM, Duckett SB, Bergstrom ET (2006) Biocontrol of Avocado dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428. doi:10.1094/MPMI-19-0418

    Article  PubMed  CAS  Google Scholar 

  • Chaves DFS, Ferrer PP, de Souza EM, Gruz LM, Monteriro RA, de Oliveira PF (2007) A two-dimensional proteome reference map of Herbaspirillum seropedicae proteins. Proteomics 7:3759–3763. doi:10.1002/pmic.200600859

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787. doi:10.1128/AEM.66.2.783-787.2000

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defence enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23. doi:10.1006/pmpp.1999.0243

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. doi:10.1038/nbt1325

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Woody OZ, Song J, Glick BR, McConkey BJ (2009) Proteome reference map for the plant growth-promoting bacterium Pseudomonas putida UW4. Proteomics 9:4271–4274. doi:10.1002/pmic.200900142

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278. doi:10.1128/AEM.71.11.7271-7278.2005

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar desert, India. Microb Ecol 54:82–90. doi:10.1007/s00248-006-9174-1

    Article  PubMed  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175. doi:10.1023/A:1024106605806

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clement C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93. doi:10.1111/j.1574-6941.2007.00410.x

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010a) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010b) Climate change effects on beneficial plant microorganism interactions. FEMS Microbiol Ecol 73:197–214. doi:10.1111/j.1574-6941.2010.00900.x

    PubMed  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197. doi:10.1007/s00248-011-9883-y

    Article  PubMed  Google Scholar 

  • Croes CL, Moens S, van Bastelaere E, Vanderleyden J, Michiels KW (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139:960–967. doi:10.1099/00221287-139-9-2261

    Google Scholar 

  • de Lorenzo V (1994) Designing microbial system for gene expression in the field. Trends Biotechnol 12:365–371. doi:10.1016/0167-7799(94)90037-X

    Article  PubMed  Google Scholar 

  • de Morais RF, Quesada DM, Reis VM, Urquiaga S, Alves BJR, Boddey RM (2012) Contribution of biological nitrogen fixation to elephant grass (Pennisetum purpureum Schum.). Plant Soil 356:23–34. doi:10.1007/s11104-011-0944-2

    Article  CAS  Google Scholar 

  • de Salamone IEG, Salvo LPD, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362. doi:10.1007/s11104-010-0487-y

    Article  CAS  Google Scholar 

  • Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M (2011) Complete Genome Sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity to plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071. doi:10.1128/JB.00129-11

    Article  PubMed  CAS  Google Scholar 

  • Deslippe JR, Egger KN (2006) Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs. Microb Ecol 51:516–525. doi:10.1007/s00248-006-9070-8

    Article  PubMed  CAS  Google Scholar 

  • Diallo MD, Reinhold-Hurek B, Hurek T (2008) Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 65:220–228. doi:10.1111/j.1574-6941.2008.00545.x

    Article  CAS  Google Scholar 

  • Dobereiner J, Reis VM, Paula MA, Olivares F (1993) Endophytic diazotrophs in sugarcane cereals and tuber crops. In: Palacios R, Moor J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer, Dordrecht, pp 671–674

    Google Scholar 

  • Dong Y, Iniguez AL, Ahmer BMM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790. doi:10.1128/AEM.69.3.1783-1790.2003

    Article  PubMed  CAS  Google Scholar 

  • Dorr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17. doi:10.1046/j.1365-2958.1998.01010.x

    Article  PubMed  CAS  Google Scholar 

  • dos Reis FB Jr, Reis VM, Urquiaga S, Dobereiner J (2000) Influence of fertilization on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant Soil 219:153–159. doi:10.1023/A:1004732500983

    Article  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334. doi:10.1046/j.1469-8137.1997.00646.x

    Article  CAS  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    PubMed  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864. doi:10.1007/s11738-009-0297-0

    Article  CAS  Google Scholar 

  • Egener T, Martin DE, Sarkar A, Reinhold-Hurek B (2001) Role of a ferredoxin gene cotranscribed with the nifHDK operon in N2 fixation and nitrogenase “switch-off” of Azoarcus sp. strain BH72. J Bacteriol 183:3752–3760. doi:10.1128/JB.183.12.3752-3760.2001

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945. doi:10.1111/j.1365-2672.2006.02843.x

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193. doi:10.1007/s11274-007-9591-4

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493. doi:10.1007/s00284-010-9642-1

    Article  PubMed  CAS  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Srivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Mathe BA (2008) Complete Genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141. doi:10.1371/journal.pgen.1000141

    Article  PubMed  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi:10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221. doi:10.1016/0038-0717(93)90217-Y

    Article  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J, Martinez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Lett 29:117–128. doi:10.1111/j.1574-6941.1999.tb00603.x

    CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339. doi:10.1007/s10658-007-9162-4

    Article  CAS  Google Scholar 

  • Godfrey SAC, Mansfield JW, Corry DS, Lovell HC, Jackson RW, Arnold DL (2010) Confocal imaging of Pseudomonas syringae pv. phaseolicola colony development in bean reveals reduced multiplication of strains containing the genomic island PPHGI-1. Mol Plant Microbe Interact 23:1294–1302. doi:10.1094/MPMI-05-10-0114

    Article  PubMed  CAS  Google Scholar 

  • Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, Zhu YX, Deng XW (2008) The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant 1:27–41. doi:10.1093/mp/ssm009

    Article  PubMed  CAS  Google Scholar 

  • Gough C, Galera C, Vasse J, Webster G, Cocking EC, Denarie J (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol Plant Microbe Interact 10:560–570. doi:10.1094/MPMI.1997.10.5.560

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamiensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37. doi:10.1007/s00248-007-9247-9

    Article  PubMed  Google Scholar 

  • Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia on two Brazilian ecosystem. Soil Biol Biochem 36:1389–1398. doi:10.1016/j.soilbio.2004.03.005

    Article  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145. doi:10.1046/j.1469-8137.2002.00371.x

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. doi:10.1139/m97-131

    Article  CAS  Google Scholar 

  • Han J, Choi HK, Lee SW, Orwin PM, Kim J, LaRoe SL, Kim TG, O’Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Han C (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190. doi:10.1128/JB.00925-10

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. doi:10.1016/j.tim.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Stoffels M, Eckert B, Kirchhof G, Schloter M (2000) Analysis of the presence and diversity of diazotrophic endophytes. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, UK, pp 727–736

    Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327. doi:10.1146/annurev.phyto.36.1.311

    Article  PubMed  CAS  Google Scholar 

  • Hoflich G, Wiehe W, Hecht-Buchholz C (1995) Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147. doi:10.1016/S0944-5013(11)80048-0

    Article  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178. doi:10.1016/j.jbiotec.2003.07.010

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant and fungus associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085. doi:10.1094/MPMI.2004.17.10.1078

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178. doi:10.1094/MPMI-18-0169

    Article  PubMed  CAS  Google Scholar 

  • Islam R, Trivedi P, Madhaiyan M, Seshadri S, Lee G, Yang J, Kim Y, Kim M, Han G, Chauhan PS, Sa T (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biol Fertil Soils 46:261–269. doi:10.1007/s00374-009-0425-4

    Article  CAS  Google Scholar 

  • Izquierdo JA, Nusslein K (2006) Distribution of extensive nifH gene diversity across physical soil microenvironments. Microb Ecol 51:441–452. doi:10.1007/s00248-006-9044-x

    Article  PubMed  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugarcane and other gramineous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119. doi:10.1080/07352689891304195

    Article  Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva LG, Reis M (2001) Further observations on the interaction between sugarcane and Gluconoacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760. doi:10.1093/jexbot/52.357.747

    PubMed  CAS  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320. doi:10.1111/j.1365-2672.2007.03383.x

    Article  PubMed  CAS  Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188. doi:10.1007/s00248-009-9485-0

    Article  PubMed  CAS  Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant Microbe Interact 24:352–358. doi:10.1094/MPMI-09-10-0208

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50. doi:10.1093/dnares/dsp026

    Article  PubMed  CAS  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164. doi:10.1002/jobm.200800011

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604. doi:10.1016/j.phytochem.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  • Khammas KM, Kaiser P (1991) Characterization of a pectinolytic activity in Azospirillum irakense. Plant Soil 137:75–79. doi:10.1007/BF02187435

    Article  CAS  Google Scholar 

  • Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266. doi:10.1007/s00248-006-9019-y

    Article  PubMed  CAS  Google Scholar 

  • King RJ, Short KA, Seidler RJ (1991) Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4-dichlorophenoxyacetate monooxygenase. Appl Environ Microbiol 57:1790–1792

    PubMed  CAS  Google Scholar 

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Dobereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55. doi:10.1023/A:1004217904546

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188. doi:10.1016/j.mimet.2004.04.006

    Article  PubMed  CAS  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733. doi:10.1111/j.1462-2920.2005.00841.x

    Article  PubMed  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151. doi:10.1071/FP07218

    Article  CAS  Google Scholar 

  • Kovach ME, Phillips RW, Elzer PH, Roop RM, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802

    PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying antibiotic-resistance cassettes. Gene 166:175–176. doi:10.1016/0378-1119(95)00584-1

    Article  PubMed  CAS  Google Scholar 

  • Kraepiel AML, Bellenge JP, Wichard T, Morel FMM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581. doi:10.1007/s10534-009-9222-7

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Bosh J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weinder S, Puhler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391. doi:10.1038/nbt1243

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2000) The quest for nitrogen fixation in rice. In: Proceeding of the third working group meeting on assessing opportunities for nitrogen fixation in rice, 9–12 Aug 1999. International Rice Research Institute, Makati City, pp 354

    Google Scholar 

  • Lery LMS, Coelho A, von Kruger WMA, Goncalves MSM, Santos MF, Valente RH, Santos EO, Rocha SLG, Perales J, Domont GB, Teixeira KRS, Bisch PM (2008) Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium. Proteomics 8:1631–1644. doi:10.1002/pmic.200700912

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Zhao MW, Tang CM, Li SP (2010) Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microb Ecol 59:344–356. doi:10.1007/s00248-009-9570-4

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93:1185–1195. doi:10.1007/s00253-011-3618-3

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopis thaliana. Mol Plant Microbe Interact 20:207–217. doi:10.1094/MPMI-20-2-0207

    Article  PubMed  CAS  Google Scholar 

  • Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere of the smooth Cordgrass, Spartina alterniflora. Appl Environ Microbiol 66:3814–3822. doi:10.1128/AEM.66.9.3814-3822.2000

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490. doi:10.1146/annurev.phyto.39.1.461

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373. doi:10.1128/AEM.68.11.5367-5373.2002

    Article  PubMed  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124. doi:10.1007/s00344-009-9079-6

    Article  CAS  Google Scholar 

  • Miche L, Battistoni F, Gernmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511. doi:10.1094/MPMI-19-0502

    Article  PubMed  CAS  Google Scholar 

  • Mirza MS, Rasul G, Mehnaz S, Ladha JK, So RB, Ali S, Malik KA (2000) Beneficial effects of inoculated nitrogen-fixing bacteria on rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila, pp 191–204

    Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park K, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconoacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286. doi:10.1016/j.syapm.2005.01.006

    Article  PubMed  CAS  Google Scholar 

  • Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Song J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J Appl Microbiol 102:981–991. doi:10.1111/j.1365-2672.2006.03157.x

    PubMed  CAS  Google Scholar 

  • Nishizawa T, Tago K, Oshima S, Hattori M, Ishii S, Otsuka S, Senoo K (2012) Complete genome sequence denitrifying and N2O-reducing bacterium Azoarcus sp. strain KH32C. J Bacteriol 194:1255. doi:10.1128/JB.06618-11

    Article  PubMed  CAS  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana, by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533–542. doi:10.1094/MPMI-09-10-0213

    Article  PubMed  CAS  Google Scholar 

  • Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884. doi:10.1128/AEM.67.4.1874-1884.2001

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191. doi:10.1128/AEM.66.5.2185-2191.2000

    Article  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88. doi:10.1094/Phyto-78-84

    CAS  Google Scholar 

  • Ovreas L, Torsvik VV (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315. doi:10.1007/s002489900117

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846. doi:10.1038/35015709

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raitzz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul ANG, Soares MAM, Gasques LS, Gimenes CCT, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SMA, Rocha CLMSC, Arantes OMN, Furlaneto MC, Godoy LP, Oliveira CEC, Satori D, Vilas-Boas LA, Watanabe MAE, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barbellos FG, Campo RJ, Chueira LMO, Nicholas MF, Pereira-Ferrari L, da Conceicao Silva JL, Gioppa NMR, Margarido VP, Menck-Soares MA, Pinto FGS, Simao RDCG, Takahashi EK, Yates MG, Souza EM (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064. doi:10.1371/journal.pgen.1002064

    Article  PubMed  CAS  Google Scholar 

  • Pilhofer M, Pavlekovic M, Lee NM, Ludwig W, Schleifer KH (2009) Fluorescence in situ hybridization for intracellular localization of nifH mRNA. Syst Appl Microbiol 32:186–192. doi:10.1016/j.syapm.2008.12.007

    Article  PubMed  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288. doi:10.1046/j.1472-765X.1997.00224.x

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014. doi:10.1046/j.1365-2958.2001.02560.x

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Schiliro E, Maldonado-Gonzalez MM, Valderrama R, Barroso-Albarracin JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. doi:10.1007/s00248-011-9827-6

    Article  PubMed  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium strain EbN1. Arch Microbiol 183:27–36. doi:10.1007/s00203-004-0742-9

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. doi:10.1016/j.tibtech.2009.12.002

    Article  PubMed  CAS  Google Scholar 

  • Ramos HJO, Roncato-Maccari LDB, Souza EM, Soares-Ramos JR, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–252. doi:10.1016/S0168-1656(02)00108-6

    Article  PubMed  CAS  Google Scholar 

  • Rasche F, Lueders T, Schloter M, Schaefer S, Buegger F, Gattinger A, Hood-Nowotny RC, Sessitsch A (2009) DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytol 181:802–807. doi:10.1111/j.1469-8137.2008.02744.x

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554. doi:10.1093/molbev/msh047

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization and perspectives to study their function. Crit Rev Plant Sci 17:29–54. doi:10.1080/07352689891304186

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi:10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S, Montagu MV, Hurek T (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus Sp. strain BH72. Mol Plant Microbe Interact 19:181–188. doi:10.1094/MPMI-19-01810

    Article  PubMed  CAS  Google Scholar 

  • Reuber TL, Long S, Walker GC (1991) Regulation of Rhizobium meliloti exo genes in free-living cells and in planta examined by using TnphoA fusions. J Bacteriol 173:426–434

    PubMed  CAS  Google Scholar 

  • Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol Pseudomonad on cereals with Flow cytometry. Mol Plant Microbe Interact 23:949–961. doi:10.1094/MPMI-23-7-0949

    Article  PubMed  CAS  Google Scholar 

  • Roe MR, Griffin TJ (2006) Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics 6:4678–4687. doi:10.1002/pmic.200500876

    Article  PubMed  CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, Elsas JDV (1998) Genetic Diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by Denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837. doi:10.1094/MPMI-19-0827

    Article  PubMed  CAS  Google Scholar 

  • Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95. doi:10.1111/j.1574-6941.2008.00582.x

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:10.1111/j.1574-6968.2007.00918.x

    Article  PubMed  CAS  Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190:7200–7208. doi:10.1128/JB.00804-08

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.103.026583

    Article  PubMed  CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705. doi:10.1139/cjm-47-8-698

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. doi:10.1016/S0958-1669(03)00067-3

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MA, Souza EM, Baura V, Wassem R, Yates MG, Pedrosa FO, Monteiro RA (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44:182–185. doi:10.1590/S0100-879X2011007500004

    Article  PubMed  CAS  Google Scholar 

  • Schwab S, Ramos HJ, Souza EM, Pedrosa FO, Yates MG, Chubatsu LS, Rigo LU (2007) Identification of NH +4 -regulated genes of Herbaspirillum seropedicae by random insertional mutagenesis. Arch Microbiol 187:379–386. doi:10.1007/s00203-006-0202-9

    Article  PubMed  CAS  Google Scholar 

  • Serrato RV, Sassaki GL, Cruz LM, Carlson RW, Muszynski A, Monteiro RA, Pedrosa FO, Souza EM, Iacomini M (2010) Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum. Can J Microbiol 56:342–347. doi:10.1139/W10-011

    Article  PubMed  CAS  Google Scholar 

  • Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Marek M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme D, Sun J, Viana CJ, Wallin E, Wang B, Wheller C, Zhu H, Dean DR, Dixon R, Wood D (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545. doi:10.1128/JB.00504-09

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Kennedy C (2000) Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus, an endophyte of sugarcane. In: Triplett EW (ed) Prokaryotic Nitrogen fixation: a model system for the analysis of biological process. Horizon Scientific Press, Wymondham, UK, pp 737–760

    Google Scholar 

  • Singh MK, Singh DP, Mesapogu S, Babu BK, Bontemps C (2011) Concomitant colonization of nifH positive endophytic Burkholderia sp. in rice (Oryza sativa L.) promotes plant growth. World J Microbiol Biotechnol 27:2023–2031. doi:10.1007/s11274-011-0664-z

    Article  Google Scholar 

  • Somers E, Srinivasan M, Vanderleyden J (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072.x

    Article  PubMed  CAS  Google Scholar 

  • Sprent JI, de Faria SM (1988) Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110:157–165. doi:10.1007/BF02226795

    Article  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244. doi:10.1016/j.mib.2006.04.001

    Article  PubMed  CAS  Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Muller-Santos M, Baura VA, Tuleski TR, Rigo L, Yates MG, Waseem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77:2180–2183. doi:10.1128/AEM.02071-10

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943. doi:10.1371/journal.pgen.1000943

    Article  PubMed  CAS  Google Scholar 

  • Taule C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49. doi:10.1007/s11104-011-1023-4

    Article  CAS  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23:89–93. doi:10.1264/jsme2.23.89

    Article  PubMed  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahlia in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant Microbe Interact 18:555–561. doi:10.1094/MPMI-18-0555

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995a) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995b) Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of nifD library. Can J Microbiol 41:235–240

    Article  PubMed  CAS  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Sa JM, Barbosa KP, de Resende AS, Alves BJR, Boddey RM (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2-fixation to Brazilian sugarcane varieties. Plant Soil. doi:10.1007/s11104-011-1016-3

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  • van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd SJ, Gow NAR (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790–798. doi:10.1094/MPMI.2002.15.8.790

    Article  PubMed  Google Scholar 

  • Venieraki A, Dimou M, Pergalis P, Chatzipavlidis I, Katinakis P (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61:277–285. doi:10.1007/s00248-010-9747-x

    Article  PubMed  Google Scholar 

  • Verhagen BW, Trotel-Aziz P, Couderchet M, Hofte M, Aziz A (2010) Pseudomonas spp. induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260. doi:10.1093/jxb/erp295

    Article  PubMed  CAS  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429. doi:10.1023/B:BILE.0000018263.94440.ab

    Article  PubMed  CAS  Google Scholar 

  • Voorhorst WGB, Eggen RIL, Luesink EJ, de Vos WM (1995) Characterization of the celB gene coding for b-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol 177:7105–7111

    PubMed  CAS  Google Scholar 

  • Webster G, Gough C, Vasse J, Bathchelor CA, O’Callaghan KJ, Kothari SL, Davey MR, Denarie J, Cocking EC (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122. doi:10.1023/A:1004283819084

    Article  CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384. doi:10.1128/JB.05055-11

    Article  PubMed  CAS  Google Scholar 

  • West ER, Cother EJ, Steel CC, Ash GJ (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216. doi:10.1139/W10-004

    Article  PubMed  CAS  Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and little at Douglas fir forest sites of the Orgegon cascade mountain range. Appl Environ Microbiol 65:374–380

    PubMed  CAS  Google Scholar 

  • Winstanley C, Morgan JA, Pickup RW, Saunders JR (1991) Use of a xylE marker gene to monitor survival of recombinant Pseudomonas putida populations in lake water by culture on nonselective media. Appl Environ Microbiol 57:1905–1913

    PubMed  CAS  Google Scholar 

  • Xing T, Quellet T, Miki BL (2004) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7:224–230. doi:10.1016/S1360-1385(02)02255-0

    Article  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhnag W, Yao Z, Li H, Liu W, He S, Geng L, Zhnag X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci 105:7564–7569. doi:10.1073/pnas.0801093105

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004

    Article  PubMed  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Phillip-Hollingswoth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114. doi:10.1023/A:1004269902246

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rasemaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazequez E, Wopereis J, Triplett E, Umali-Gracia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870. doi:10.1071/PP01069

    CAS  Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    PubMed  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554. doi:10.1046/j.1462-2920.2003.00451.x

    Article  PubMed  CAS  Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, Rizvi MA, Ali A (2009) Metagenomics-an advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4:49–54

    CAS  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 103:9897–9902. doi:10.1073/pnas.0604017103

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273. doi:10.1111/j.1365-313X.2008.03593.x

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP, Jin GL, Xie GL (2012) Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J Bacteriol 194:1280–1281. doi:10.1128/JB.06702-11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Panwar , Mohd Sayeed Akhtar or Prabhat N. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gupta, G., Panwar, J., Akhtar, M.S., Jha, P.N. (2012). Endophytic Nitrogen-Fixing Bacteria as Biofertilizer. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5449-2_8

Download citation

Publish with us

Policies and ethics