Advertisement

Supergravity: A Bestiary in Diverse Dimensions

  • Pietro Giuseppe Frè

Abstract

Chapter 8 is a bestiary of Supergravity Special Geometries associated with its scalar sector. The chapter clarifies the codifying role of the scalar geometry in constructing the bosonic part of a supergravity Lagrangian. The dominant role among the scalar manifolds of homogeneous symmetric spaces is emphasized illustrating the principles that allow the determination of such U/H cosets for any supergravity theory. The mechanism of symplectic embedding that allows to extend the action of U-isometries from the scalar to the vector field sector are explained in detail within the general theory of electric/magnetic duality rotations. Next the chapter provides a self-contained summary of the most important special geometries appearing in D=4 and D=5 supergravity, namely Special Kähler Geometry, Very Special Real Geometry and Quaternionic Geometry.

Keywords

Line Bundle Vector Multiplet Isometry Group Supergravity Theory Holomorphic Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrianopoli, L., D’Auria, R., Ferrara, S.: U-duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A 13, 431 (1998). hep-th/9612105 MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Cremmer, E., Ferrara, S., Girardello, L., Van Proeyen, A.: Nucl. Phys. B 212, 413 (1983) ADSCrossRefGoogle Scholar
  3. 3.
    Castellani, L., D’Auria, R., Ferrara, S.: Special geometry without special coordinates. Class. Quantum Gravity 7, 1767 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Castellani, L., D’Auria, R., Ferrara, S.: Special Kähler geometry: An intrinsic formulation from N=2 space-time supersymmetry. Phys. Lett. B 241, 57 (1990) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Strominger, A.: Special geometry. Commun. Math. Phys. 133, 163 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Alekseevskii, D.V.: Math. USSR, Izv. 9(2), 297 (1975) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Castellani, L., D’Auria, R., Frè, P.: Supergravity and Superstrings: A Geometric Perspective. World Scientific, Singapore (1991) Google Scholar
  8. 8.
    D’Auria, R., Maina, E., Regge, T., Frè, P.: Geometrical first order supergravity in five space-time dimensions. Ann. Phys. 135, 237 (1981) ADSCrossRefGoogle Scholar
  9. 9.
    Gunaydin, M., Sierra, G., Townsend, P.K.: The geometry of N=2 Maxwell-Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Gunaydin, M., Sierra, G., Townsend, P.K.: Gauging the D=5 Maxwell-Einstein supergravity theories: More on Jordan algebras. Nucl. Phys. B 253, 573 (1985) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    de Wit, B., Van Proeyen, A.: Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307 (1992). hep-th/9112027 ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    de Wit, B., Vanderseypen, F., Van Proeyen, A.: Symmetry structure of special geometries. Nucl. Phys. B 400, 463 (1993). hep-th/9210068 ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    de Wit, B., Van Proeyen, A.: Isometries of special manifolds. hep-th/9505097
  14. 14.
    de Wit, B., Lauwers, P.G., Van Proeyen, A.: Nucl. Phys. B 255, 569 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    Bagger, J., Witten, E.: Nucl. Phys. B 222, 1 (1983) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Hitchin, N.J., Karlhede, A., Lindstrom, U., Rocek, M.: HyperKähler metrics and supersymmetry. Commun. Math. Phys. 108, 535 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Galicki, K.: Commun. Math. Phys. 108, 117 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Cecotti, S., Ferrara, S., Girardello, L.: Phys. Lett. B 213, 443 (1988). MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Cecotti, S., Ferrara, S., Girardello, L.: Int. J. Mod. Phys. A 4, 2475 (1989). MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    D’Auria, R., Ferrara, S., Frè, P.: Special and quaternionic isometries: General couplings in N=2 supergravity and the scalar potential. Nucl. Phys. B 359, 705 (1991) ADSCrossRefGoogle Scholar
  21. 21.
    Frè, P.: Lectures on special Kähler geometry and electric magnetic duality. Nucl. Phys. B, Proc. Suppl. B, C 45, 59 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    Ferrara, S., Sabharwal, S.: Nucl. Phys. B 332, 317 (1990) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    de Wit, B., Vanderseypen, F., Van Proeyen, A.: Nucl. Phys. B 400, 463 (1993) ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Bagger, J., Witten, E.: Nucl. Phys. B 222, 1 (1983) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Gaillard, M.K., Zumino, B.: Duality rotations for interacting fields. Nucl. Phys. B 193, 221 (1981) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Cremmer, E., Scherk, J., Ferrara, S.: SU(4) invariant supergravity theory. Phys. Lett. B 74, 61 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    Cremmer, E., Scherk, J., Ferrara, S.: U(N) invariance in extended supergravity. Phys. Lett. B 68, 234 (1977) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Frè, P.: Gaugings and other supergravity tools of p-brane physics. In: Lectures given at the RTN School Recent Advances in M-theory, Paris, February 1–8 2001. IHP. hep-th/0102114

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pietro Giuseppe Frè
    • 1
  1. 1.Dipartimento di Fisica TeoricaUniversity of TorinoTorinoItaly

Personalised recommendations