Advertisement

The Life Cycle of Human Papillomavirus

  • Jiaping Xue
  • Benjamin J. Vesper
  • James A. RadosevichEmail author
Chapter

Abstract

This chapter provides an overview of the life cycle of the human papillomavirus (HPV), including: (1) infection, (2) genome maintenance and cell proliferation, (3) genome amplification, (4) virus assembly and release, and (5) integration and tumor progression. While many of the processes involved with the HPV life cycle are still not well known, this chapter summarizes the research to date that has formed our current understanding of the cellular mechanisms driving each of these steps. Furthermore, this chapter describes known differences in the life cycle of high-risk and low-risk HPV infections, and the resulting tumor progression associated with each.

Keywords

Human papillomavirus (HPV) Virions Heparan sulfate proteoglycans (HSPGs) Cervical cancer Squamous cell carcinoma Squamous intraepithelial lesions (SILs) High-risk HPV Low-risk HPV 

Abbreviations

HPV

Human Papillomavirus

TA

Transit Amplifying cells

GAG

Glycoaminoglycan

HSPs

Heparan Sulfate Proteoglycans

HS

Heparon Sulfate

VLPs

Virus Like Particles

CyPB

Cyclophilin B

ECM

Extracellular Matrix

LN 5

Laminin 5

ER

Endoplasmic Reticulum

ND 10

Nuclear Domain 10

PML

Promyelocytic Leukemia protein

PODs

PML Oncogenic Domains

DYNLT 1

Dynein Light Chain

Brd 4

Bromodomain-containing protein

Chl R1

Chromosome Loss-related protein

NLSs

Nuclear Localization Signals

nNLS

N-terminus NLS

cNLS

C-terminus NLS

LCR

Long Control Region

DSBs

Double Strands Breaks

CFSs

Common Fragile Sites

C/EBP

CLAAT/Enhancer Binding Protein

YY1

Yin-Yang 1

CDP/Cut

CCAAT displacement protein

AP1

Activator Protein 1

L-SIL

Low grade Squamous Intraepithelial Lesion

H-SIL

High Grade Squamous Intraepithelial Lesion

References

  1. Clayton, E.; Doupe, D. P.; Klein, A. M.; Winton, D. J.; Simons, B. D.; Jones, P. H. A single type of progenitor cell maintains normal epidermis. Nature, 2007, 446(7132), 185–9.PubMedGoogle Scholar
  2. Bodily, J.; Laimins, L. A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol, 2010, 19(1), 33–9.Google Scholar
  3. Roberts, J. N.; Buck, C. B.; Thompson, C. D.; Kines, R.; Bernardo, M.; Choyke, P. L.; Lowy, D. R.; Schiller, J. T. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med, 2007, 13(7), 857–61.PubMedGoogle Scholar
  4. Mercer, J.; Schelhaas, M.; Helenius, A. Virus entry by endocytosis. Annu Rev Biochem, 2010, 79, 803–33.Google Scholar
  5. Joyce, J. G.; Tung, J. S.; Przysiecki, C. T.; Cook, J. C.; Lehman, E. D.; Sands, J. A.; Jansen, K. U.; Keller, P. M. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem, 1999, 274(9), 5810–22.PubMedGoogle Scholar
  6. Giroglou, T.; Florin, L.; Schafer, F.; Streeck, R. E.; Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol, 2001, 75(3), 1565–70.PubMedGoogle Scholar
  7. Bernfield, M.; Kokenyesi, R.; Kato, M.; Hinkes, M. T.; Spring, J.; Gallo, R. L.; Lose, E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol, 1992, 8, 365–93.PubMedGoogle Scholar
  8. Fransson, L. A. Glypicans. Int J Biochem Cell Biol, 2003, 35(2), 125–9.PubMedGoogle Scholar
  9. Esko, J. D.; Lindahl, U. Molecular diversity of heparan sulfate. J Clin Invest, 2001, 108(2), 169–73.PubMedGoogle Scholar
  10. Shafti-Keramat, S.; Handisurya, A.; Kriehuber, E.; Meneguzzi, G.; Slupetzky, K.; Kirnbauer, R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 2003, 77(24), 13125–35.PubMedGoogle Scholar
  11. Johnson, K. M.; Kines, R. C.; Roberts, J. N.; Lowy, D. R.; Schiller, J. T.; Day, P. M. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol, 2009, 83(5), 2067–74.PubMedGoogle Scholar
  12. Knappe, M.; Bodevin, S.; Selinka, H. C.; Spillmann, D.; Streeck, R. E.; Chen, X. S.; Lindahl, U.; Sapp, M. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem, 2007, 282(38), 27913–22.PubMedGoogle Scholar
  13. Selinka, H. C.; Florin, L.; Patel, H. D.; Freitag, K.; Schmidtke, M.; Makarov, V. A.; Sapp, M. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol, 2007, 81(20), 10970–80.PubMedGoogle Scholar
  14. Day, P. M.; Gambhira, R.; Roden, R. B.; Lowy, D. R.; Schiller, J. T. Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol, 2008, 82(9), 4638–46.PubMedGoogle Scholar
  15. Bienkowska-Haba, M.; Patel, H. D.; Sapp, M. Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog, 2009, 5(7), e1000524.PubMedGoogle Scholar
  16. Sapp, M.; Bienkowska-Haba, M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J, 2009, 276(24), 7206–16.PubMedGoogle Scholar
  17. Campos, S. K.; Ozbun, M. A. Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One, 2009, 4(2), e4463.PubMedGoogle Scholar
  18. Culp, T. D.; Budgeon, L. R.; Marinkovich, M. P.; Meneguzzi, G.; Christensen, N. D. Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol, 2006, 80(18), 8940–50.PubMedGoogle Scholar
  19. Culp, T. D.; Budgeon, L. R.; Christensen, N. D. Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology, 2006, 347(1), 147–59.PubMedGoogle Scholar
  20. Day, P. M.; Lowy, D. R.; Schiller, J. T. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology, 2003, 307(1), 1–11.PubMedGoogle Scholar
  21. Smith, J. L.; Campos, S. K.; Ozbun, M. A. Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 2007, 81(18), 9922–31.PubMedGoogle Scholar
  22. Spoden, G.; Freitag, K.; Husmann, M.; Boller, K.; Sapp, M.; Lambert, C.; Florin, L. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs). PLoS One, 2008, 3(10), e3313.PubMedGoogle Scholar
  23. Laniosz, V.; Dabydeen, S. A.; Havens, M. A.; Meneses, P. I. Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J Virol, 2009, 83(16), 8221–32.PubMedGoogle Scholar
  24. Selinka, H. C.; Giroglou, T.; Sapp, M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology, 2002, 299(2), 279–287.PubMedGoogle Scholar
  25. Doms, R. W.; Helenius, A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol, 1986, 60(3), 833–9.PubMedGoogle Scholar
  26. Stegmann, T.; Morselt, H. W.; Scholma, J.; Wilschut, J. Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochim Biophys Acta, 1987, 904(1), 165–70.PubMedGoogle Scholar
  27. Smith, J. L.; Campos, S. K.; Wandinger-Ness, A.; Ozbun, M. A. Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol, 2008, 82(19), 9505–12.PubMedGoogle Scholar
  28. Pelkmans, L.; Helenius, A. Endocytosis via caveolae. Traffic, 2002, 3(5), 311–20.PubMedGoogle Scholar
  29. Day, P. M.; Baker, C. C.; Lowy, D. R.; Schiller, J. T. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A, 2004, 101(39), 14252–7.PubMedGoogle Scholar
  30. Gornemann, J.; Hofmann, T. G.; Will, H.; Muller, M. Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology, 2002, 303(1), 69–78.PubMedGoogle Scholar
  31. Maul, G. G.; Negorev, D.; Bell, P.; Ishov, A. M. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol, 2000, 129(2–3), 278–87.PubMedGoogle Scholar
  32. Kamper, N.; Day, P. M.; Nowak, T.; Selinka, H. C.; Florin, L.; Bolscher, J.; Hilbig, L.; Schiller, J. T.; Sapp, M. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol, 2006, 80(2), 759–68.PubMedGoogle Scholar
  33. Richards, R. M.; Lowy, D. R.; Schiller, J. T.; Day, P. M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A, 2006, 103(5), 1522–7.PubMedGoogle Scholar
  34. Florin, L.; Becker, K. A.; Lambert, C.; Nowak, T.; Sapp, C.; Strand, D.; Streeck, R. E.; Sapp, M. Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol, 2006, 80(13), 6691–6.PubMedGoogle Scholar
  35. Ishii, Y.; Tanaka, K.; Kondo, K.; Takeuchi, T.; Mori, S.; Kanda, T. Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. Virology, 2010, 406(2), 181–8.Google Scholar
  36. Schneider, M. A.; Spoden, G. A.; Florin, L.; Lambert, C. Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol, 2011, 13(1), 32–46.Google Scholar
  37. Pyeon, D.; Pearce, S. M.; Lank, S. M.; Ahlquist, P.; Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog, 2009, 5(2), e118.Google Scholar
  38. Stanley, M. A.; Browne, H. M.; Appleby, M.; Minson, A. C. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer, 1989, 43(4), 672–6.PubMedGoogle Scholar
  39. Bedell, M. A.; Hudson, J. B.; Golub, T. R.; Turyk, M. E.; Hosken, M.; Wilbanks, G. D.; Laimins, L. A. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol, 1991, 65(5), 2254–60.PubMedGoogle Scholar
  40. Wilson, V. G.; West, M.; Woytek, K.; Rangasamy, D. Papillomavirus E1 proteins: form, function, and features. Virus Genes, 2002, 24(3), 275–90.PubMedGoogle Scholar
  41. You, J.; Croyle, J. L.; Nishimura, A.; Ozato, K.; Howley, P. M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell, 2004, 117(3), 349–60.PubMedGoogle Scholar
  42. Berg, M.; Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J Virol, 1997, 71(5), 3853–63.PubMedGoogle Scholar
  43. Mohr, I. J.; Clark, R.; Sun, S.; Androphy, E. J.; MacPherson, P.; Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science, 1990, 250(4988), 1694–9.PubMedGoogle Scholar
  44. You, J. Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta, 2010, 1799(3–4), 192–9.Google Scholar
  45. Bastien, N.; McBride, A. A. Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology, 2000, 270(1), 124–34.PubMedGoogle Scholar
  46. Lehman, C. W.; Botchan, M. R. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1998, 95(8), 4338–43.PubMedGoogle Scholar
  47. Abroi, A.; Ilves, I.; Kivi, S.; Ustav, M. Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein. J Virol, 2004, 78(4), 2100–13.PubMedGoogle Scholar
  48. Poddar, A.; Reed, S. C.; McPhillips, M. G.; Spindler, J. E.; McBride, A. A. The human papillomavirus type 8 E2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes. J Virol, 2009, 83(2), 640–50.PubMedGoogle Scholar
  49. Van Tine, B. A.; Dao, L. D.; Wu, S. Y.; Sonbuchner, T. M.; Lin, B. Y.; Zou, N.; Chiang, C. M.; Broker, T. R.; Chow, L. T. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A, 2004, 101(12), 4030–5.PubMedGoogle Scholar
  50. Baxter, M. K.; McPhillips, M. G.; Ozato, K.; McBride, A. A. The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4. J Virol, 2005, 79(8), 4806–18.PubMedGoogle Scholar
  51. Parish, J. L.; Bean, A. M.; Park, R. B.; Androphy, E. J. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell, 2006, 24(6), 867–76.PubMedGoogle Scholar
  52. Frattini, M. G.; Lim, H. B.; Laimins, L. A. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc Natl Acad Sci U S A, 1996, 93(7), 3062–7.PubMedGoogle Scholar
  53. Stubenrauch, F.; Hummel, M.; Iftner, T.; Laimins, L. A. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol, 2000, 74(3), 1178–86.PubMedGoogle Scholar
  54. Lace, M. J.; Anson, J. R.; Thomas, G. S.; Turek, L. P.; Haugen, T. H. The E8--E2 gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes. J Virol, 2008, 82(21), 10841–53.PubMedGoogle Scholar
  55. Ammermann, I.; Bruckner, M.; Matthes, F.; Iftner, T.; Stubenrauch, F. Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol, 2008, 82(11), 5127–36.PubMedGoogle Scholar
  56. Thomas, J. T.; Hubert, W. G.; Ruesch, M. N.; Laimins, L. A. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A, 1999, 96(15), 8449–54.PubMedGoogle Scholar
  57. De Geest, K.; Turyk, M. E.; Hosken, M. I.; Hudson, J. B.; Laimins, L. A.; Wilbanks, G. D. Growth and differentiation of human papillomavirus type 31b positive human cervical cell lines. Gynecol Oncol, 1993, 49(3), 303–10.PubMedGoogle Scholar
  58. Doorbar, J. The papillomavirus life cycle. J Clin Virol, 2005, 32 Suppl 1, S7–15.PubMedGoogle Scholar
  59. Stoler, M. H.; Broker, T. R. In situ hybridization detection of human papillomavirus DNAs and messenger RNAs in genital condylomas and a cervical carcinoma. Hum Pathol, 1986, 17(12), 1250–8.PubMedGoogle Scholar
  60. Ozbun, M. A.; Meyers, C. Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology, 1998, 248(2), 218–30.PubMedGoogle Scholar
  61. Cheng, S.; Schmidt-Grimminger, D. C.; Murant, T.; Broker, T. R.; Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 1995, 9(19), 2335–49.PubMedGoogle Scholar
  62. Flores, E. R.; Allen-Hoffmann, B. L.; Lee, D.; Lambert, P. F. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol, 2000, 74(14), 6622–31.PubMedGoogle Scholar
  63. Banerjee, N. S.; Genovese, N. J.; Noya, F.; Chien, W. M.; Broker, T. R.; Chow, L. T. Conditionally activated E7 proteins of high-risk and low-risk human papillomaviruses induce S phase in postmitotic, differentiated human keratinocytes. J Virol, 2006, 80(13), 6517–24.PubMedGoogle Scholar
  64. Zhang, B.; Chen, W.; Roman, A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A, 2006, 103(2), 437–42.PubMedGoogle Scholar
  65. Genovese, N. J.; Banerjee, N. S.; Broker, T. R.; Chow, L. T. Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol, 2008, 82(10), 4862–73.PubMedGoogle Scholar
  66. Wang, H. K.; Duffy, A. A.; Broker, T. R.; Chow, L. T. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev, 2009, 23(2), 181–94.PubMedGoogle Scholar
  67. Peh, W. L.; Middleton, K.; Christensen, N.; Nicholls, P.; Egawa, K.; Sotlar, K.; Brandsma, J.; Percival, A.; Lewis, J.; Liu, W. J.; Doorbar, J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol, 2002, 76(20), 10401–16.PubMedGoogle Scholar
  68. Middleton, K.; Peh, W.; Southern, S.; Griffin, H.; Sotlar, K.; Nakahara, T.; El-Sherif, A.; Morris, L.; Seth, R.; Hibma, M.; Jenkins, D.; Lambert, P.; Coleman, N.; Doorbar, J. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol, 2003, 77(19), 10186–201.PubMedGoogle Scholar
  69. Ruesch, M. N.; Laimins, L. A. Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology, 1998, 250(1), 19–29.PubMedGoogle Scholar
  70. Hummel, M.; Hudson, J. B.; Laimins, L. A. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol, 1992, 66(10), 6070–80.PubMedGoogle Scholar
  71. Ozbun, M. A.; Meyers, C. Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol, 1998, 72(4), 2715–22.PubMedGoogle Scholar
  72. Ozbun, M. A.; Meyers, C. Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol, 1997, 71(7), 5161–72.PubMedGoogle Scholar
  73. Fehrmann, F.; Klumpp, D. J.; Laimins, L. A. Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol, 2003, 77(5), 2819–31.PubMedGoogle Scholar
  74. Peh, W. L.; Brandsma, J. L.; Christensen, N. D.; Cladel, N. M.; Wu, X.; Doorbar, J. The viral E4 protein is required for the completion of the cottontail rabbit papillomavirus productive cycle in vivo. J Virol, 2004, 78(4), 2142–51.PubMedGoogle Scholar
  75. Wilson, R.; Fehrmann, F.; Laimins, L. A. Role of the E1--E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol, 2005, 79(11), 6732–40.PubMedGoogle Scholar
  76. Moody, C. A.; Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog, 2009, 5(10), e1000605.PubMedGoogle Scholar
  77. Banerjee, N. S.; Wang, H. K.; Broker, T. R.; Chow, L. T. Human papillomavirus (HPV) E7 induces prolonged G2 following S-Phase reentry in differentiated human keratinocytes. J Biol Chem, 2011, 286(17), 15473–82.Google Scholar
  78. Flores, E. R.; Lambert, P. F. Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol, 1997, 71(10), 7167–79.PubMedGoogle Scholar
  79. Chow, L. T.; Duffy, A. A.; Wang, H. K.; Broker, T. R. A highly efficient system to produce infectious human papillomavirus: Elucidation of natural virus-host interactions. Cell Cycle, 2009, 8(9), 1319–23.PubMedGoogle Scholar
  80. Davy, C.; Doorbar, J. G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007, 368(2), 219–26.PubMedGoogle Scholar
  81. Moody, C. A.; Fradet-Turcotte, A.; Archambault, J.; Laimins, L. A. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A, 2007, 104(49), 19541–6.PubMedGoogle Scholar
  82. McKenna, D. J.; McDade, S. S.; Patel, D.; McCance, D. J. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol, 2010, 84(20), 10644–52.Google Scholar
  83. Melar-New, M.; Laimins, L. A. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol, 2010, 84(10), 5212–21.Google Scholar
  84. Sonkoly, E.; Stahle, M.; Pivarcsi, A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol, 2008, 33(3), 312–5.PubMedGoogle Scholar
  85. Yi, R.; Poy, M. N.; Stoffel, M.; Fuchs, E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 2008, 452(7184), 225–9.PubMedGoogle Scholar
  86. Rinne, T.; Brunner, H. G.; van Bokhoven, H. p63-associated disorders. Cell Cycle, 2007, 6(3), 262–8.PubMedGoogle Scholar
  87. Truong, A. B.; Khavari, P. A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle, 2007, 6(3), 295–9.PubMedGoogle Scholar
  88. Lena, A. M.; Shalom-Feuerstein, R.; Rivetti di Val Cervo, P.; Aberdam, D.; Knight, R. A.; Melino, G.; Candi, E. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ, 2008, 15(7), 1187–95.PubMedGoogle Scholar
  89. Genther, S. M.; Sterling, S.; Duensing, S.; Munger, K.; Sattler, C.; Lambert, P. F. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol, 2003, 77(5), 2832–42.PubMedGoogle Scholar
  90. Belanger, K. G.; Mirzayan, C.; Kreuzer, H. E.; Alberts, B. M.; Kreuzer, K. N. Two-dimensional gel analysis of rolling circle replication in the presence and absence of bacteriophage T4 primase. Nucleic Acids Res, 1996, 24(11), 2166–75.PubMedGoogle Scholar
  91. Stauffer, Y.; Raj, K.; Masternak, K.; Beard, P. Infectious human papillomavirus type 18 pseudovirions. J Mol Biol, 1998, 283(3), 529–36.PubMedGoogle Scholar
  92. Bird, G.; O’Donnell, M.; Moroianu, J.; Garcea, R. L. Possible role for cellular karyopherins in regulating polyomavirus and papillomavirus capsid assembly. J Virol, 2008, 82(20), 9848–57.PubMedGoogle Scholar
  93. Merle, E.; Rose, R. C.; LeRoux, L.; Moroianu, J. Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin alpha2beta1 heterodimers. J Cell Biochem, 1999, 74(4), 628–37.PubMedGoogle Scholar
  94. Nelson, L. M.; Rose, R. C.; LeRoux, L.; Lane, C.; Bruya, K.; Moroianu, J. Nuclear import and DNA binding of human papillomavirus type 45 L1 capsid protein. J Cell Biochem, 2000, 79(2), 225–38.PubMedGoogle Scholar
  95. Nelson, L. M.; Rose, R. C.; Moroianu, J. Nuclear import strategies of high risk HPV16 L1 major capsid protein. J Biol Chem, 2002, 277(26), 23958–64.PubMedGoogle Scholar
  96. Darshan, M. S.; Lucchi, J.; Harding, E.; Moroianu, J. The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol, 2004, 78(22), 12179–88.PubMedGoogle Scholar
  97. Klucevsek, K.; Daley, J.; Darshan, M. S.; Bordeaux, J.; Moroianu, J. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology, 2006, 352(1), 200–8.PubMedGoogle Scholar
  98. Day, P. M.; Roden, R. B.; Lowy, D. R.; Schiller, J. T. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol, 1998, 72(1), 142–50.PubMedGoogle Scholar
  99. Swindle, C. S.; Zou, N.; Van Tine, B. A.; Shaw, G. M.; Engler, J. A.; Chow, L. T. Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol, 1999, 73(2), 1001–9.PubMedGoogle Scholar
  100. Bischof, O.; Nacerddine, K.; Dejean, A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol, 2005, 25(3), 1013–24.PubMedGoogle Scholar
  101. Florin, L.; Sapp, C.; Streeck, R. E.; Sapp, M. Assembly and translocation of papillomavirus capsid proteins. J Virol, 2002, 76(19), 10009–14.PubMedGoogle Scholar
  102. Guccione, E.; Lethbridge, K. J.; Killick, N.; Leppard, K. N.; Banks, L. HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene, 2004, 23(27), 4662–72.PubMedGoogle Scholar
  103. Heino, P.; Zhou, J.; Lambert, P. F. Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 2000, 276(2), 304–14.PubMedGoogle Scholar
  104. Roberts, S.; Hillman, M. L.; Knight, G. L.; Gallimore, P. H. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol, 2003, 77(1), 673–84.PubMedGoogle Scholar
  105. Becker, K. A.; Florin, L.; Sapp, C.; Maul, G. G.; Sapp, M. Nuclear localization but not PML protein is required for incorporation of the papillomavirus minor capsid protein L2 into virus-like particles. J Virol, 2004, 78(3), 1121–8.PubMedGoogle Scholar
  106. Becker, K. A.; Florin, L.; Sapp, C.; Sapp, M. Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology, 2003, 314(1), 161–7.PubMedGoogle Scholar
  107. Florin, L.; Becker, K. A.; Sapp, C.; Lambert, C.; Sirma, H.; Muller, M.; Streeck, R. E.; Sapp, M. Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol, 2004, 78(11), 5546–53.PubMedGoogle Scholar
  108. Bordeaux, J.; Forte, S.; Harding, E.; Darshan, M. S.; Klucevsek, K.; Moroianu, J. The l2 minor capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import receptors and viral DNA. J Virol, 2006, 80(16), 8259–62.PubMedGoogle Scholar
  109. Zhou, J.; Stenzel, D. J.; Sun, X. Y.; Frazer, I. H. Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J Gen Virol, 1993, 74 (Pt 4), 763–8.PubMedGoogle Scholar
  110. Roden, R. B.; Day, P. M.; Bronzo, B. K.; Yutzy, W. H. t.; Yang, Y.; Lowy, D. R.; Schiller, J. T. Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection. J Virol, 2001, 75(21), 10493–7.PubMedGoogle Scholar
  111. Casini, G. L.; Graham, D.; Heine, D.; Garcea, R. L.; Wu, D. T. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology, 2004, 325(2), 320–7.PubMedGoogle Scholar
  112. Finnen, R. L.; Erickson, K. D.; Chen, X. S.; Garcea, R. L. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol, 2003, 77(8), 4818–26.PubMedGoogle Scholar
  113. Modis, Y.; Trus, B. L.; Harrison, S. C. Atomic model of the papillomavirus capsid. EMBO J, 2002, 21(18), 4754–62.PubMedGoogle Scholar
  114. Conway, M. J.; Meyers, C. Replication and assembly of human papillomaviruses. J Dent Res, 2009, 88(4), 307–17.PubMedGoogle Scholar
  115. Doorbar, J.; Ely, S.; Sterling, J.; McLean, C.; Crawford, L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature, 1991, 352(6338), 824–7.PubMedGoogle Scholar
  116. Wang, Q.; Griffin, H.; Southern, S.; Jackson, D.; Martin, A.; McIntosh, P.; Davy, C.; Masterson, P. J.; Walker, P. A.; Laskey, P.; Omary, M. B.; Doorbar, J. Functional analysis of the human papillomavirus type 16 E1 = E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol, 2004, 78(2), 821–33.PubMedGoogle Scholar
  117. Bryan, J. T.; Brown, D. R. Association of the human papillomavirus type 11 E1()E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology, 2000, 277(2), 262–9.PubMedGoogle Scholar
  118. Brown, D. R.; Kitchin, D.; Qadadri, B.; Neptune, N.; Batteiger, T.; Ermel, A. The human papillomavirus type 11 E1--E4 protein is a transglutaminase 3 substrate and induces abnormalities of the cornified cell envelope. Virology, 2006, 345(1), 290–8.PubMedGoogle Scholar
  119. Lehr, E.; Hohl, D.; Huber, M.; Brown, D. Infection with Human Papillomavirus alters expression of the small proline rich proteins 2 and 3. J Med Virol, 2004, 72(3), 478–83.PubMedGoogle Scholar
  120. Munger, K.; Baldwin, A.; Edwards, K. M.; Hayakawa, H.; Nguyen, C. L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol, 2004, 78(21), 11451–60.PubMedGoogle Scholar
  121. Duensing, S.; Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res, 2002, 62(23), 7075–82.PubMedGoogle Scholar
  122. Jones, D. L.; Alani, R. M.; Munger, K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev, 1997, 11(16), 2101–11.PubMedGoogle Scholar
  123. Sherman, L.; Schlegel, R. Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol, 1996, 70(5), 3269–79.PubMedGoogle Scholar
  124. Hudson, J. B.; Bedell, M. A.; McCance, D. J.; Laiminis, L. A. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol, 1990, 64(2), 519–26.PubMedGoogle Scholar
  125. Griep, A. E.; Herber, R.; Jeon, S.; Lohse, J. K.; Dubielzig, R. R.; Lambert, P. F. Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J Virol, 1993, 67(3), 1373–84.PubMedGoogle Scholar
  126. Schwarz, E.; Freese, U. K.; Gissmann, L.; Mayer, W.; Roggenbuck, B.; Stremlau, A.; zur Hausen, H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, 1985, 314(6006), 111–4.PubMedGoogle Scholar
  127. Boshart, M.; Gissmann, L.; Ikenberg, H.; Kleinheinz, A.; Scheurlen, W.; zur Hausen, H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J, 1984, 3(5), 1151–7.PubMedGoogle Scholar
  128. Yee, C.; Krishnan-Hewlett, I.; Baker, C. C.; Schlegel, R.; Howley, P. M. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol, 1985, 119(3), 361–6.PubMedGoogle Scholar
  129. Cullen, A. P.; Reid, R.; Campion, M.; Lorincz, A. T. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol, 1991, 65(2), 606–12.PubMedGoogle Scholar
  130. Durst, M.; Kleinheinz, A.; Hotz, M.; Gissmann, L. The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol, 1985, 66 (Pt 7), 1515–22.PubMedGoogle Scholar
  131. Peitsaro, P.; Johansson, B.; Syrjanen, S. Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol, 2002, 40(3), 886–91.PubMedGoogle Scholar
  132. Chow, L. T.; Broker, T. R.; Steinberg, B. M. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS, 2010, 118(6–7), 422–49.Google Scholar
  133. Jeon, S.; Lambert, P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A, 1995, 92(5), 1654–8.PubMedGoogle Scholar
  134. Pett, M.; Coleman, N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol, 2007, 212(4), 356–67.PubMedGoogle Scholar
  135. Jeon, S.; Allen-Hoffmann, B. L.; Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol, 1995, 69(5), 2989–97.PubMedGoogle Scholar
  136. Luft, F.; Klaes, R.; Nees, M.; Durst, M.; Heilmann, V.; Melsheimer, P.; von Knebel Doeberitz, M. Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int J Cancer, 2001, 92(1), 9–17.PubMedGoogle Scholar
  137. Choo, K. B.; Pan, C. C.; Han, S. H. Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology, 1987, 161(1), 259–61.PubMedGoogle Scholar
  138. Rosl, F.; Achtstatter, T.; Bauknecht, T.; Hutter, K. J.; Futterman, G.; zur Hausen, H. Extinction of the HPV18 upstream regulatory region in cervical carcinoma cells after fusion with non-tumorigenic human keratinocytes under non-selective conditions. EMBO J, 1991, 10(6), 1337–45.PubMedGoogle Scholar
  139. Stoler, M. H.; Rhodes, C. R.; Whitbeck, A.; Wolinsky, S. M.; Chow, L. T.; Broker, T. R. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol, 1992, 23(2), 117–28.PubMedGoogle Scholar
  140. Bernard, B. A.; Bailly, C.; Lenoir, M. C.; Darmon, M.; Thierry, F.; Yaniv, M. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol, 1989, 63(10), 4317–24.PubMedGoogle Scholar
  141. Romanczuk, H.; Thierry, F.; Howley, P. M. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol, 1990, 64(6), 2849–59.PubMedGoogle Scholar
  142. Dowhanick, J. J.; McBride, A. A.; Howley, P. M. Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol, 1995, 69(12), 7791–9.PubMedGoogle Scholar
  143. Francis, D. A.; Schmid, S. I.; Howley, P. M. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol, 2000, 74(6), 2679–86.PubMedGoogle Scholar
  144. Cone, R. W.; Minson, A. C.; Smith, M. R.; McDougall, J. K. Conservation of HPV-16 E6/E7 ORF sequences in a cervical carcinoma. J Med Virol, 1992, 37(2), 99–107.PubMedGoogle Scholar
  145. Wagatsuma, M.; Hashimoto, K.; Matsukura, T. Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences. J Virol, 1990, 64(2), 813–21.PubMedGoogle Scholar
  146. Lee, D.; Kim, H. Z.; Jeong, K. W.; Shim, Y. S.; Horikawa, I.; Barrett, J. C.; Choe, J. Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J Biol Chem, 2002, 277(31), 27748–56.PubMedGoogle Scholar
  147. Veldman, T.; Horikawa, I.; Barrett, J. C.; Schlegel, R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol, 2001, 75(9), 4467–72.PubMedGoogle Scholar
  148. Klingelhutz, A. J.; Foster, S. A.; McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 1996, 380(6569), 79–82.PubMedGoogle Scholar
  149. Kiyono, T.; Foster, S. A.; Koop, J. I.; McDougall, J. K.; Galloway, D. A.; Klingelhutz, A. J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 1998, 396(6706), 84–8.PubMedGoogle Scholar
  150. Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell, 2000, 100(1), 57–70.PubMedGoogle Scholar
  151. Richards, R. I. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet, 2001, 17(6), 339–45.PubMedGoogle Scholar
  152. Matzner, I.; Savelyeva, L.; Schwab, M. Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line. Cancer Lett, 2003, 189(2), 207–19.PubMedGoogle Scholar
  153. Thorland, E. C.; Myers, S. L.; Gostout, B. S.; Smith, D. I. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene, 2003, 22(8), 1225–37.PubMedGoogle Scholar
  154. Thorland, E. C.; Myers, S. L.; Persing, D. H.; Sarkar, G.; McGovern, R. M.; Gostout, B. S.; Smith, D. I. Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res, 2000, 60(21), 5916–21.PubMedGoogle Scholar
  155. Wentzensen, N.; Vinokurova, S.; von Knebel Doeberitz, M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res, 2004, 64(11), 3878–84.PubMedGoogle Scholar
  156. Durst, M.; Glitz, D.; Schneider, A.; zur Hausen, H. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology, 1992, 189(1), 132–40.PubMedGoogle Scholar
  157. Zhao, W.; Chow, L. T.; Broker, T. R. Transcription activities of human papillomavirus type 11 E6 promoter-proximal elements in raft and submerged cultures of foreskin keratinocytes. J Virol, 1997, 71(11), 8832–40.PubMedGoogle Scholar
  158. Parker, J. N.; Zhao, W.; Askins, K. J.; Broker, T. R.; Chow, L. T. Mutational analyses of differentiation-dependent human papillomavirus type 18 enhancer elements in epithelial raft cultures of neonatal foreskin keratinocytes. Cell Growth Differ, 1997, 8(7), 751–62.PubMedGoogle Scholar
  159. Zhao, W.; Chow, L. T.; Broker, T. R. A distal element in the HPV-11 upstream regulatory region contributes to promoter repression in basal keratinocytes in squamous epithelium. Virology, 1999, 253(2), 219–29.PubMedGoogle Scholar
  160. Sibbet, G. J.; Campo, M. S. Multiple interactions between cellular factors and the non-coding region of human papillomavirus type 16. J Gen Virol, 1990, 71 (Pt 11), 2699–707.PubMedGoogle Scholar
  161. O’Connor, M. J.; Tan, S. H.; Tan, C. H.; Bernard, H. U. YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol, 1996, 70(10), 6529–39.PubMedGoogle Scholar
  162. Bauknecht, T.; Angel, P.; Royer, H. D.; zur Hausen, H. Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J, 1992, 11(12), 4607–17.PubMedGoogle Scholar
  163. O’Connor, M. J.; Stunkel, W.; Koh, C. H.; Zimmermann, H.; Bernard, H. U. The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol, 2000, 74(1), 401–10.PubMedGoogle Scholar
  164. Zhao, W.; Noya, F.; Chen, W. Y.; Townes, T. M.; Chow, L. T.; Broker, T. R. Trichostatin A up-regulates human papillomavirus type 11 upstream regulatory region-E6 promoter activity in undifferentiated primary human keratinocytes. J Virol, 1999, 73(6), 5026–33.PubMedGoogle Scholar
  165. Ai, W.; Toussaint, E.; Roman, A. CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J Virol, 1999, 73(5), 4220–9.PubMedGoogle Scholar
  166. Li, S.; Moy, L.; Pittman, N.; Shue, G.; Aufiero, B.; Neufeld, E. J.; LeLeiko, N. S.; Walsh, M. J. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem, 1999, 274(12), 7803–15.PubMedGoogle Scholar
  167. Lace, M. J.; Isacson, C.; Anson, J. R.; Lorincz, A. T.; Wilczynski, S. P.; Haugen, T. H.; Turek, L. P. Upstream regulatory region alterations found in human papillomavirus type 16 (HPV-16) isolates from cervical carcinomas increase transcription, ori function, and HPV immortalization capacity in culture. J Virol, 2009, 83(15), 7457–66.PubMedGoogle Scholar
  168. Bosch, F. X.; Schwarz, E.; Boukamp, P.; Fusenig, N. E.; Bartsch, D.; zur Hausen, H. Suppression in vivo of human papillomavirus type 18 E6-E7 gene expression in nontumorigenic HeLa X fibroblast hybrid cells. J Virol, 1990, 64(10), 4743–54.PubMedGoogle Scholar
  169. Durst, M.; Bosch, F. X.; Glitz, D.; Schneider, A.; zur Hausen, H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J Virol, 1991, 65(2), 796–804.PubMedGoogle Scholar
  170. zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst, 2000, 92(9), 690–8.PubMedGoogle Scholar
  171. zur Hausen, H. Intracellular surveillance of persisting viral infections. Human genital cancer results from deficient cellular control of papillomavirus gene expression. Lancet, 1986, 2(8505), 489–91.PubMedGoogle Scholar
  172. Rosl, F.; Lengert, M.; Albrecht, J.; Kleine, K.; Zawatzky, R.; Schraven, B.; zur Hausen, H. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids. J Virol, 1994, 68(4), 2142–50.PubMedGoogle Scholar
  173. Kyo, S.; Inoue, M.; Hayasaka, N.; Inoue, T.; Yutsudo, M.; Tanizawa, O.; Hakura, A. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology, 1994, 200(1), 130–9.PubMedGoogle Scholar
  174. Braun, L.; Durst, M.; Mikumo, R.; Gruppuso, P. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1. Cancer Res, 1990, 50(22), 7324–32.PubMedGoogle Scholar
  175. Woodworth, C. D.; Notario, V.; DiPaolo, J. A. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol, 1990, 64(10), 4767–75.PubMedGoogle Scholar
  176. Malejczyk, J.; Malejczyk, M.; Majewski, S.; Breitburd, F.; Luger, T. A.; Jablonska, S.; Orth, G. Increased tumorigenicity of human keratinocytes harboring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-alpha-mediated growth limitation. Int J Cancer, 1994, 56(4), 593–8.PubMedGoogle Scholar
  177. Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta, 1991, 1072(2–3), 129–57.PubMedGoogle Scholar
  178. Soto, U.; Das, B. C.; Lengert, M.; Finzer, P.; zur Hausen, H.; Rosl, F. Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-alpha mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene, 1999, 18(21), 3187–98.PubMedGoogle Scholar
  179. Bechtold, V.; Beard, P.; Raj, K. Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol, 2003, 77(3), 2021–8.PubMedGoogle Scholar
  180. Pett, M. R.; Herdman, M. T.; Palmer, R. D.; Yeo, G. S.; Shivji, M. K.; Stanley, M. A.; Coleman, N. Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc Natl Acad Sci U S A, 2006, 103(10), 3822–7.PubMedGoogle Scholar
  181. Herdman, M. T.; Pett, M. R.; Roberts, I.; Alazawi, W. O.; Teschendorff, A. E.; Zhang, X. Y.; Stanley, M. A.; Coleman, N. Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis, 2006, 27(11), 2341–53.PubMedGoogle Scholar
  182. Spartz, H.; Lehr, E.; Zhang, B.; Roman, A.; Brown, D. R. Progression from productive infection to integration and oncogenic transformation in human papillomavirus type 59-immortalized foreskin keratinocytes. Virology, 2005, 336(1), 11–25.PubMedGoogle Scholar
  183. Tonon, S. A.; Picconi, M. A.; Bos, P. D.; Zinovich, J. B.; Galuppo, J.; Alonio, L. V.; Teyssie, A. R. Physical status of the E2 human papilloma virus 16 viral gene in cervical preneoplastic and neoplastic lesions. J Clin Virol, 2001, 21(2), 129–34.PubMedGoogle Scholar
  184. Kalantari, M.; Blennow, E.; Hagmar, B.; Johansson, B. Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas. Diagn Mol Pathol, 2001, 10(1), 46–54.PubMedGoogle Scholar
  185. Klaes, R.; Woerner, S. M.; Ridder, R.; Wentzensen, N.; Duerst, M.; Schneider, A.; Lotz, B.; Melsheimer, P.; von Knebel Doeberitz, M. Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res, 1999, 59(24), 6132–6.PubMedGoogle Scholar
  186. Hopman, A. H.; Smedts, F.; Dignef, W.; Ummelen, M.; Sonke, G.; Mravunac, M.; Vooijs, G. P.; Speel, E. J.; Ramaekers, F. C. Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol, 2004, 202(1), 23–33.PubMedGoogle Scholar
  187. Higgins, G. D.; Uzelin, D. M.; Phillips, G. E.; McEvoy, P.; Marin, R.; Burrell, C. J. Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. J Gen Virol, 1992, 73 (Pt 8), 2047–57.PubMedGoogle Scholar
  188. Pett, M. R.; Alazawi, W. O.; Roberts, I.; Dowen, S.; Smith, D. I.; Stanley, M. A.; Coleman, N. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res, 2004, 64(4), 1359–68.PubMedGoogle Scholar
  189. Goodwin, E. C.; Naeger, L. K.; Breiding, D. E.; Androphy, E. J.; DiMaio, D. Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol, 1998, 72(5), 3925–34.PubMedGoogle Scholar
  190. DeFilippis, R. A.; Goodwin, E. C.; Wu, L.; DiMaio, D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol, 2003, 77(2), 1551–63.PubMedGoogle Scholar
  191. Teissier, S.; Ben Khalifa, Y.; Mori, M.; Pautier, P.; Desaintes, C.; Thierry, F. A new E6/P63 pathway, together with a strong E7/E2F mitotic pathway, modulates the transcriptome in cervical cancer cells. J Virol, 2007, 81(17), 9368–76.PubMedGoogle Scholar
  192. Melsheimer, P.; Vinokurova, S.; Wentzensen, N.; Bastert, G.; von Knebel Doeberitz, M. DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin Cancer Res, 2004, 10(9), 3059–63.PubMedGoogle Scholar
  193. Gray, E.; Pett, M. R.; Ward, D.; Winder, D. M.; Stanley, M. A.; Roberts, I.; Scarpini, C. G.; Coleman, N. In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res, 2010, 70(10), 4081–91.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jiaping Xue
    • 1
  • Benjamin J. Vesper
    • 1
  • James A. Radosevich
    • 1
    Email author
  1. 1.College of Dentistry, Department of Oral and Diagnostic MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations