Advertisement

Towards High-Energy Neutrino Astronomy

  • Christian SpieringEmail author

Abstract

The search for the sources of cosmic rays is a three-fold assault, using charged cosmic rays, gamma rays and neutrinos. The first conceptual ideas to detect high energy neutrinos date back to the late fifties. The long evolution towards detectors with a realistic discovery potential started in the seventies and eighties, with the pioneering works in the Pacific Ocean close to Hawaii and in Lake Baikal in Siberia. But only now, half a century after the first concepts, such a detector is in operation: IceCube at the South Pole. We do not yet know whether with IceCube we will indeed detect extraterrestrial high energy neutrinos or whether this will remain the privilege of next generation telescopes. But whatever the answer will be: the path to the present detectors was a remarkable journey. This review sketches its main milestones.

Keywords

Neutrino Oscillation Atmospheric Neutrino Neutrino Flux Crab Nebula Neutrino Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbasi, R., et al. (IceCube Coll.): Phys. Rev. D79, 062001 (2009). arXiv:0809.1646 ADSGoogle Scholar
  2. Abbasi, R., et al. (IceCube Coll.): Phys. Rev. D83, 012001 (2011a). arXiv:1010.3980 ADSGoogle Scholar
  3. Abbasi, R., et al. (IceCube Coll.): Astron. Astrophys. 535, A109 (2011b). arXiv.org/abs/1108.0171 ADSCrossRefGoogle Scholar
  4. Abbasi, A., et al. (IceCube Coll.): Neutrinos challenge gamma ray burst origin of cosmic rays. Nature 484, 351 (2012) ADSCrossRefGoogle Scholar
  5. Achar, C., et al.: Phys. Lett. 18, 196 (1965) ADSCrossRefGoogle Scholar
  6. Ackermann, M.: Searches for signals from cosmic point-like sources of high energy neutrinos in 5 years of AMANDA-II data. Ph.D. thesis, Humboldt University Berlin (2006) Google Scholar
  7. Ackermann, M., et al. (AMANDA Coll.): J. Geophys. Res. 111, D13203 (2006) ADSCrossRefGoogle Scholar
  8. Ageron, M., et al. (ANTARES Coll.): Nucl. Instrum. Methods A 581, 695 (2007) ADSCrossRefGoogle Scholar
  9. Ageron, M., et al. (ANTARES Coll.): Nucl. Instrum. Methods A 656, 11 (2011). arXiv:1104.1607 ADSCrossRefGoogle Scholar
  10. Aggouras, G., et al. (NESTOR Coll.): Nucl. Instrum. Methods A 552, 420 (2005a) ADSCrossRefGoogle Scholar
  11. Aggouras, G., et al. (NESTOR Coll.): Astropart. Phys. 23, 377 (2005b) ADSCrossRefGoogle Scholar
  12. Aguilar, J.A., et al. (ANTARES Coll.): Astropart. Phys. 34, 652 (2011) ADSCrossRefGoogle Scholar
  13. Ahrens, J., et al. (AMANDA Coll.): Nucl. Instrum. Methods A 524, 169 (2004a). arXiv:astro-ph/0407044 ADSCrossRefGoogle Scholar
  14. Ahrens, J., et al. (IceCube Coll.): Astropart. Phys. 20, 507 (2004b). arXiv:astro-ph/0305196 ADSCrossRefGoogle Scholar
  15. Amram, P., et al. (ANTARES Coll.): Astropart. Phys. 13, 127 (2000) ADSCrossRefGoogle Scholar
  16. Amram, P., et al. (ANTARES Coll.): Astropart. Phys. 19, 253 (2003). arXiv:astro-ph/0206454 ADSCrossRefGoogle Scholar
  17. Andres, E., et al. (AMANDA Coll.): Nucl. Phys. Proc. Suppl. 91, 423 (2001). arXiv:astro-ph/0009242 ADSCrossRefGoogle Scholar
  18. ANTARES homepage: http://antares.in2p3.fr
  19. Antonioli, P., et al.: New J. Phys. 6, 114 (2004). arXiv:astro-ph/0406214 ADSCrossRefGoogle Scholar
  20. Askebjer, P., et al. (AMANDA Coll.): Science 267, 1147 (1995) ADSCrossRefGoogle Scholar
  21. Aslanides, E., et al. (ANTARES Coll.): A deep sea telescope for high-energy neutrinos. arXiv:astro-ph/9907432 (1999)
  22. Aynutdinov, V., et al. (Baikal Coll.): Astropart. Phys. 25, 140 (2006a). arXiv:astro-ph/0508675 ADSCrossRefGoogle Scholar
  23. Aynutdinov, V., et al. (Baikal Coll.): Nucl. Instrum. Methods A 567, 433 (2006b). arXiv:astro-ph/0609743 ADSCrossRefGoogle Scholar
  24. Aynutdinov, V., et al. (Baikal Coll.): Nucl. Instrum. Methods A 602, 227 (2009). arXiv:0811.1110 ADSCrossRefGoogle Scholar
  25. Babson, E., et al. (DUMAND Coll.): Phys. Rev. D 42, 3613 (1990) ADSCrossRefGoogle Scholar
  26. Bagduev, R., et al. (Baikal Coll.): Nucl. Instrum. Methods A 420, 138 (1999). arXiv:astro-ph/9903347 ADSCrossRefGoogle Scholar
  27. Bagley, P., et al. (KM3NeT Coll.): Conceptual design report (2008). isbn:978-90-6488-031-5. Available from: www.km3net.org
  28. Bagley, P., et al. (KM3NeT Coll.): Technical design report (2010). isbn:978-90-6488-033-9. Available from: www.km3net.org
  29. Balkanov, R.V., et al. (Baikal Coll.): Astropart. Phys. 12, 75 (1999). arXiv:astro-ph/9705244 ADSCrossRefGoogle Scholar
  30. Belotti, E., Laveder, M.: In: Proc. 5th Int. Workshop on Neutrino Telescopes, Venice, p. 275 (1993) Google Scholar
  31. Berezinsky, V.: In: Proc. Int. Workshop on Neutrino Telescopes, Venice, p. 125 (1990) Google Scholar
  32. Bezrukov, L.B., et al. (Baikal Coll.): In: Proc. XI. Conf. on Neutrino Physics and Astrophysics, Nordkirchen, Germany, p. 550 (1984) Google Scholar
  33. Bezrukov, L.B., et al.: In: Proc. 2nd Int. Symp. Underground Physics-87, Baksan Valley, USSR, p. 230 (1987) Google Scholar
  34. Blondeau, F. (for the ANTARES Coll.): Prog. Part. Nucl. Phys. 40, 413 (1998) ADSCrossRefGoogle Scholar
  35. Bosetti, P., et al. (DUMAND Coll.): DUMAND II: Proposal to construct a deep-ocean laboratory for the study of high energy neutrino astrophysics and particle physics. Tech. Rep. HDC-2-88, Hawaii DUMAND Center. University of Hawaii (1988) Google Scholar
  36. Capone, A., et al. (NEMO Coll.): Nucl. Instrum. Methods A 602, 47 (2009) ADSCrossRefGoogle Scholar
  37. Deneyko, A.O., et al.: In: Proc. 3rd Int. Workshop on Neutrino Telescopes, Venice, p. 407 (1991) Google Scholar
  38. Domogatsky, G.V., et al.: In: Proc. XII. Conf. on Neutrino Physics and Astrophysics, Sendai, Japan, p. 737 (1986) Google Scholar
  39. Eberl, T. (for the ANTARES Coll.): Prog. Part. Nucl. Phys. 66, 457 (2011) ADSCrossRefGoogle Scholar
  40. Feinstein, F. (for the ANTARES Coll.): Nucl. Phys. Proc. Suppl. 70, 445 (1999) ADSCrossRefGoogle Scholar
  41. Greisen, K.: Annu. Rev. Nucl. Part. Sci. 10, 63 (1960) ADSCrossRefGoogle Scholar
  42. Halzen, F.: Ice fishing for neutrinos (1995). Available from: http://icecube.berkeley.edu/amanda/ice-fishing.html
  43. Halzen, F.: Antarctic dreams (1998). Available from: http://www.exploratorium.edu/origins/antarctica/tools/dreams1.html
  44. Halzen, F., Hooper, D.: Astropart. Phys. 23, 537 (2005). arXiv:astro-ph/0502449 ADSCrossRefGoogle Scholar
  45. Halzen, F., Learned, J.G.: In: Proc. 5th Int. Symp. on Very High-Energy Cosmic-Ray Interactions, Lodz, Poland (1988) Google Scholar
  46. Harwit, M.: Cosmic Discovery. Basic Books, New York (1981) Google Scholar
  47. IceCube homepage: http://www.icecube.wisc.edu/
  48. Katz, U., Spiering, C.: High-energy neutrino astrophysics: status and perspectives. Prog. Part. Nucl. Phys. 67, 651 (2012). arXiv:1111.0507 ADSCrossRefGoogle Scholar
  49. Kotzer, P. (ed.) DUMAND-75, Proc. 1975 Summer DUMAND Study, Western Washington State College, Bellingham (1976) Google Scholar
  50. Kowalski, M.: J. Cosmol. Astropart. Phys. 0505, 010 (2005). arXiv:astro-ph/0505506 ADSCrossRefGoogle Scholar
  51. Krishnaswamy, M., et al.: Proc. R. Soc. Lond. 323, 489 (1971) ADSCrossRefGoogle Scholar
  52. Learned, J. (ed.): DUMAND-1979. Proc. of Khabarovsk and Lake Baikal Summer Workshops (1979) Google Scholar
  53. Lowder, D., et al.: Nature 353, 331 (1991) ADSCrossRefGoogle Scholar
  54. Markov, M.A.: In: Proc. 10th ICHEP, Rochester, p. 578 (1960) Google Scholar
  55. Markov, M., Zheleznykh, I.: Nucl. Phys. 27, 385 (1961) CrossRefGoogle Scholar
  56. NESTOR homepage: http://www.nestor.noa.gr/
  57. Reimer, A., Böttcher, M., Postnikov, S.: Astrophys. J. 630, 186 (2005). arXiv:astro-ph/0505233 ADSCrossRefGoogle Scholar
  58. Reines, F.: Annu. Rev. Nucl. Part. Sci. 10, 1 (1960) ADSCrossRefGoogle Scholar
  59. Reines, F.: In: Peterson, V. (ed.) Proc. 30th Int. Conf. on Neutrino Physics and Astrophysics, vol. 2, p. 496 (1981) Google Scholar
  60. Reines, F., et al.: Phys. Rev. Lett. 15, 9 (1965) MathSciNetCrossRefGoogle Scholar
  61. Resvanis, L.K., et al. (NESTOR Coll.): Nucl. Phys. Proc. Suppl. 35, 294 (1994) ADSCrossRefGoogle Scholar
  62. Roberts, A. (ed.): DUMAND-76, Proc. 1976 Summer DUMAND Workshop, University of Hawaii, Honolulu (1977) Google Scholar
  63. Roberts, A.: Rev. Mod. Phys. 64, 259 (1992) ADSCrossRefGoogle Scholar
  64. Roberts, A., Wilkins, G. (eds.): DUMAND-78, Proc. 1978 Summer DUMAND Study (1978) Google Scholar
  65. Sokalski, I., Spiering, C. (eds.) (Baikal Coll.): The Baikal Neutrino Telescope NT-200. Tech. Rep. Baikal-92-03, DESY/INR (1992) Google Scholar
  66. Stecker, F.W.: Phys. Rev. D 72, 107301 (2005). arXiv:astro-ph/0510537 ADSCrossRefGoogle Scholar
  67. Svoboda, R., et al.: Astrophys. J. 315, 480 (1987) CrossRefGoogle Scholar
  68. Taiuti, M., et al. (NEMO Coll.): Nucl. Instrum. Methods A 626, S25 (2011) ADSCrossRefGoogle Scholar
  69. The High Energy Neutrino Astrophysics Panel: High energy neutrino observatories (2002). Available from: www.lngs.infn.it/lngs/infn/contents/docs/pdf/panagic/henap2002.pdf
  70. van Aller, G., et al.: IEEE Trans. Nucl. Sci. NS-30, 1119 (1983) ADSGoogle Scholar
  71. Waxman, E., Bahcall, J.: Phys. Rev. D 59, 023002 (1999). arXiv:hep-ph/9807282 ADSCrossRefGoogle Scholar
  72. Weekes, T.C., et al.: Astrophys. J. 342, 379 (1989) ADSCrossRefGoogle Scholar
  73. Wischnewski, R., et al.: In: Proc. 3rd Int. NESTOR Workshop, Pylos, Greece, p. 213 (1993) Google Scholar
  74. Zheleznykh, I.: Int. J. Mod. Phys. A 21S1, 1 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.DESYZeuthenGermany

Personalised recommendations