Development of Ultra High-Energy Cosmic Ray Research

  • Karl-Heinz KampertEmail author
  • Alan A. Watson


The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kolhörster and Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental contributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon interests focused to the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmosphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renaissance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the example of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.


Cloud Chamber Geiger Counter Telescope Array Shower Array Pierre Auger Observatory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge stimulating discussions and generous support given by Luisa Bonolis, Antonella Castellina, Bruce Dawson, Piera Ghia, Antoine Letessier-Selvon, Maria Concetta Maccarone, Marco Segala, Mike Walter, and many other colleagues for helping us to access to some of the original key papers distributed in various archives around the world. KHK also acknowledges financial support by the German Ministry for Research and Education (BMBF) and by the Helmholtz Alliance for Astroparticle Physics and AAW acknowledges the UK Science and Technology Council and the Leverhalme Foundation.


  1. Abraham, J., et al.: Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods A523, 50 (2004) ADSGoogle Scholar
  2. Abraham, J., et al. (Pierre Auger Collaboration): Correlations of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938 (2007) ADSCrossRefGoogle Scholar
  3. Afanasiev, B.N., et al.: Recent rezults from Yakutsk experiment. In: Nagano, M. (ed.) Proc. Tokyo Workshop on the Techniques for the Study of the Extremely High Energy Cosmic Rays, p. 35 (1993) Google Scholar
  4. Aglietta, M., et al. (EAS-TOP Collaboration): The EAS-TOP array at E 0=1014–1016 eV: stability and resolutions. Nucl. Instrum. Methods A 277, 23 (1989) ADSCrossRefGoogle Scholar
  5. Allan, H.R., et al.: The distribution of energy in extensive air showers and the shower size spectrum. Proc. Phys. Soc. 79, 1170 (1962) ADSCrossRefGoogle Scholar
  6. Andrews, D., et al.: Evidence for the existence of cosmic ray particles with E>5×1019 eV. Nature 219, 343 (1968) ADSCrossRefGoogle Scholar
  7. Antoni, T., et al. (KASCADE Collaboration): The cosmic-ray experiment KASCADE. Nucl. Instrum. Methods A513, 490 (2003) ADSGoogle Scholar
  8. Antoni, T., et al. (KASCADE Collaboration): KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems. Astropart. Phys. 24, 1–25 (2005) ADSCrossRefGoogle Scholar
  9. Apel, W.D., et al. (KASCADE-Grande Collaboration): The KASCADE-Grande experiment. Nucl. Instrum. Methods A620, 202–216 (2010) ADSGoogle Scholar
  10. Apel, W.D., et al. (KASCADE-Grande Collaboration): Kneelike structure in the spectrum of the heavy component of cosmic rays. Phys. Rev. Lett. 107, 171104 (2011) ADSCrossRefGoogle Scholar
  11. Askaryan, G.A.: Excess negative charge of an electron-photon shower and its coherent radio emission. JETP 14, 441–443 (1962) Google Scholar
  12. Auger, P.: In: Sekido, Y., Elliot, H. (eds.) Early History of Cosmic Ray Studies. Reidel, Dordrecht (1985) Google Scholar
  13. Auger, P., Maze, R., Robley: Extension et pouvoir pénétrant des grandes gerbes de rayons cosmiques. Comptes Rendus 208, 1641 (1939a) Google Scholar
  14. Auger, P., et al.: Extensive cosmic ray showers. Rev. Mod. Phys. 11, 288 (1939b) ADSCrossRefGoogle Scholar
  15. Bassi, P., Clark, G., Rossi, B.: Distribution of arrival times of air shower particles. Phys. Rev. A 92, 441 (1953) ADSGoogle Scholar
  16. Belenki, S.Z., Landau, L.: Hydrodynamic theory of multiple production of particles. Suppl. Nuovo Cim. 3(1), 15 (1956) CrossRefGoogle Scholar
  17. Bellido, J.A., et al.: Southern hemisphere observations of a 1018 eV Cosmic Ray Source near the direction of the Galactic centre. Astropart. Phys. 15, 167 (2001) ADSCrossRefGoogle Scholar
  18. Belyaev, V.A., Chudakov, A.E.: Ionization glow of air and its possible use for air shower detection. Bull. USSR Acad. Sci. Phys. Ser. 30(10), 1700 (1966) Google Scholar
  19. Bergeson, H.E., Boone, J.C., Cassiday, G.L.: In: Proc. 14th ICRC, Munich, vol. 8, p. 3059 (1975) Google Scholar
  20. Bergeson, H.E., et al.: Measurement of light emission from remote cosmic-ray air showers. Phys. Rev. Lett. 39, 847 (1977) ADSCrossRefGoogle Scholar
  21. Bethe, H., Heitler, W.: On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. A 146, 83 (1934) ADSCrossRefGoogle Scholar
  22. Bhabha, H., Heitler, W.: The passage of fast electrons and the theory of cosmic showers. Proc. R. Soc. A 159, 432–458 (1937) ADSzbMATHCrossRefGoogle Scholar
  23. Bird, H.E., et al.: Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys. J. 441, 144–150 (1995) ADSCrossRefGoogle Scholar
  24. Blackett, P.M.S.: In: Proceedings of the International Conference on the Emission Spectra of the Night Sky and Aurorae, pp. 34–35. Physical Society, London (1947) Google Scholar
  25. Blackett, P.M.S.: Cloud chamber researches in nuclear physics and cosmic radiation. Nobel Lecture (13 December, 1948) Google Scholar
  26. Blackett, P.M.S., Occhialini, G.: Photography of penetrating corpuscular radiation. Nature 130, 363 (1932) ADSCrossRefGoogle Scholar
  27. Borione, A., et al.: A large air shower array to search for astrophysical sources emitting γ-rays with energies >1014 eV. Nucl. Instrum. Methods 346, 329 (1994) ADSCrossRefGoogle Scholar
  28. Bothe, W.: Zur Vereinfachung von Koinzidenzzählungen. Z. Phys. 59, 1–5 (1929) ADSGoogle Scholar
  29. Bunner, A.N.: The atmosphere as a cosmic ray scintillator. Master Thesis, Cornell University (1964) Google Scholar
  30. Bunner, A.N.: The atmosphere as a cosmic ray scintillator. PhD Thesis, Cornell University (1967) Google Scholar
  31. Bunner, A.N., Greisen, K., Landecker, P.B.: An imaging system for EAS optical emission. Can. J. Phys. 46, S266 (1968) CrossRefGoogle Scholar
  32. Carlson, J.F., Oppenheimer, J.R.: On multiplicative showers. Phys. Rev. 51, 220 (1937) ADSCrossRefGoogle Scholar
  33. Chudakov, A.E., et al.: In: Proc. 6th ICRC, Moscow, vol. II, p. 50 (1960) Google Scholar
  34. Clark, W.G.: The scientific legacy of Bruno Rossi. Università degli Padova, 7 (2006) Google Scholar
  35. Clark, G.W., et al.: An experiment in air showers produced by high-energy cosmic rays. Nature 180, 353 (1957) ADSCrossRefGoogle Scholar
  36. Clark, G., et al.: The M.I.T. air shower program Suppl. Nuovo Cim. 8, 623 (1958) CrossRefGoogle Scholar
  37. Clark, G.W., et al.: Cosmic-ray air showers at sea level. Phys. Rev. 122(2), 637 (1961) ADSCrossRefGoogle Scholar
  38. Clay, R.W., et al.: Cosmic rays from the galactic center. Astropart. Phys. 12, 249 (2000) ADSCrossRefGoogle Scholar
  39. Cocconi, G., Koester, L.J., Perkins, D.H.: Calculation of particle fluxes. Lawrence Berkeley Laboratory Report LBL 10022, pp. 167–192 (1962) Google Scholar
  40. Compton, A.H., Getting, I.A.: An apparent effect of galactic rotation on the intensity of cosmic rays. Phys. Rev. 47, 817 (1935) ADSzbMATHCrossRefGoogle Scholar
  41. Cranshaw, T.E.: Cosmic Rays. Clarendon Press, Oxford (1963) Google Scholar
  42. Cranshaw, T.E., Galbraith, W.: Philos. Mag. 45, 1109 (1954) Google Scholar
  43. Cranshaw, T.E., Galbraith, W.: Philos. Mag. 2, 797 (1957) ADSCrossRefGoogle Scholar
  44. Dawson, B.: Comment on a Japanese detection of fluorescence light from a cosmic ray shower in 1969 (2011). arXiv:1112.5686
  45. Falcke, H., Gorham, P.W.: Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope. Astropart. Phys. 19, 477 (2003) ADSCrossRefGoogle Scholar
  46. Falcke, H., et al. (LOPES Collaboration): Detection and imaging of atmospheric radio flashes from cosmic ray air showers. Nature 435, 313 (2005) ADSCrossRefGoogle Scholar
  47. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169 (1949) ADSzbMATHCrossRefGoogle Scholar
  48. Fermi, E.: High energy nuclear events. Prog. Theor. Phys. 5(4), 570 (1950) MathSciNetADSCrossRefGoogle Scholar
  49. Fermi, E.: Angular distribution of the pions produced in high energy nuclear collisions. Phys. Rev. 81(5), 683 (1951) ADSzbMATHCrossRefGoogle Scholar
  50. Fretter, W.B.: In: Proceedings of Echo Lake Cosmic Ray Symposium (1949) Google Scholar
  51. Fukui, S., et al.: A study on the structure of the extensive air shower. Prog. Theor. Phys. Suppl. 16, 1–53 (1960) ADSCrossRefGoogle Scholar
  52. Galbraith, W.: Extensive Air Showers. Academic Press, San Diego (1958) Google Scholar
  53. Galbraith, W., Jelley, J.V.: Light pulses from the night sky associated with cosmic rays. Nature 171, 349 (1953) ADSCrossRefGoogle Scholar
  54. Geiger, H., Müller, W.: Elektronenzählrohr zur Messung schwächster Aktivitäten. Naturwissenschaften 31, 617–618 (1928) ADSCrossRefGoogle Scholar
  55. Gorham, P.W., et al.: Observations of microwave continuum emission from air shower plasmas. Phys. Rev. D 78, 032007 (2008) ADSCrossRefGoogle Scholar
  56. Gould, R.J., Schréder, G.: Opacity of the universe to high-energy photons. Phys. Rev. Lett. 16, 252 (1966) ADSCrossRefGoogle Scholar
  57. Greisen, K.: Prog. Cosm. Ray Phys. 3, 1–141 (1956) Google Scholar
  58. Greisen, K.: Cosmic ray showers. Annu. Rev. Nucl. Part. Sci. 10, 63 (1960) ADSCrossRefGoogle Scholar
  59. Greisen, K.: End to the cosmic ray spectrum? Phys. Rev. Lett. 16, 748 (1966a) ADSCrossRefGoogle Scholar
  60. Greisen, K.: In: Proc. 9th ICRC, London, vol. 2, p. 609 (1966b) Google Scholar
  61. Hara, T., et al.: Detection of the atmospheric scintillation light from air showers. Acta Phys. Acad. Sci. Hung. 29, 369 (1970) Google Scholar
  62. Heisenberg, W.: Zur Theorie der Schauer in der Höhenstrahlung. Z. Phys. 101, 533 (1936) ADSCrossRefGoogle Scholar
  63. Hersil, J., et al.: Observations of extensive air showers near the maximum of their longitudinal development. Phys. Rev. Lett. 6(1), 22 (1961) ADSCrossRefGoogle Scholar
  64. Hersil, J., et al.: Extensive air showers at 4200 m. J. Phys. Soc. Jpn. 17, 243 (1962) CrossRefGoogle Scholar
  65. Hess, V.F.: Über die Beobachtungen der durchdringenden Strahlung bei sieben Freiballonflügen. Phys. Z. 8, 1084 (1912) Google Scholar
  66. Hillas, A.M.: Cosmic Rays. Pergamon Press, Elmsford (1972) Google Scholar
  67. Hillas, A.M.: Two interesting techniques for Monte Carlo simulation of very high-energy hadron cascades. In: Linsley, J., Hillas, A.M. (eds.) Proc. of the Paris Workshop on Cascade Simulations, p. 193 (1982). Google Scholar
  68. Hillas, A.M.: The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984) ADSCrossRefGoogle Scholar
  69. Hoffmann, G., Pforte, W.S.: Zur Struktur der Ultrastrahlung. Phys. Z. 31, 347 (1930) Google Scholar
  70. Hoover, S., et al.: Observation of ultrahigh-energy cosmic rays with the ANITA Balloon-Borne radio interferometer. Phys. Rev. Lett. 105, 151101 (2010) ADSCrossRefGoogle Scholar
  71. Ito, N., et al.: In: Proc. 25th ICRC, Durban, vol. 4, p. 117 (1997) Google Scholar
  72. Jelley, J.V.: High-energy γ-ray absorption in space by a 3.5 K microwave field. Phys. Rev. Lett. 16, 479 (1966) ADSCrossRefGoogle Scholar
  73. Kamata, K., Nishimura, J.: The lateral and the angular structure functions of electron showers. Prog. Theor. Phys. Suppl. 6, 93 (1958) ADSCrossRefGoogle Scholar
  74. Kameda, T., Toyoda, Y., Maeda, T.: J. Phys. Soc. Jpn. 15, 1565 (1960) ADSCrossRefGoogle Scholar
  75. Kampert, K.-H., Unger, M.: Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 35, 660 (2012) ADSCrossRefGoogle Scholar
  76. Khristiansen, G.B., et al.: The EAS-1000 array. Ann. N.Y. Acad. Sci. 571, 640 (1989) ADSCrossRefGoogle Scholar
  77. Knapp, J.: In: Proc. 25th ICRC, Durban, vol. 8, p. 83 (1997) Google Scholar
  78. Kolhörster, W., Matthes, I., Weber, E.: Gekoppelte Höhenstrahlen. Naturwissenschaften 26, 576 (1938) ADSCrossRefGoogle Scholar
  79. Krieger, A.S., Bradt, H.V.: Cherenkov light in extensive air showers and the chemical composition of primary cosmic rays at 1016 eV. Phys. Rev. 185, 1629 (1969) ADSCrossRefGoogle Scholar
  80. Kulikov, G.V., Khristiansen, G.B.: On the size spectrum of extensive air showers. JETP 35, 441 (1959) Google Scholar
  81. Kulikov, K., et al.: In: Proc. 9th ICRC, London (1965) Google Scholar
  82. Linsley, J.: In: Proceedings of the 8th International Cosmic Ray Conference, Jaipur, vol. 4, p. 77 (1963a) Google Scholar
  83. Linsley, J.: Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys. Rev. Lett. 10(4), 146 (1963b) ADSCrossRefGoogle Scholar
  84. Linsley, J.: In: Proc. 15th ICRC, Plovdiv, vol. 12, p. 89 (1977) Google Scholar
  85. Linsley, J.: Study of 1020 eV cosmic rays by observing air showers from a platform in space, response to Call for Projects and Ideas in High Energy Astrophysics for the 1980’s, Astronomy Survey Committee (Field Committee) (1979) Google Scholar
  86. Linsley, J.: In: Wada, M. (ed.) Catalogue of Highest Energy Cosmic Rays. World Data Center of Cosmic Rays, Institute of Physical and Chemical Research, Itabashi, Tokyo (1980) Google Scholar
  87. Linsley, J., Hillas, A.M.: In: Proc. of the Paris Workshop on Cascade Simulations. Texas Center for the Advancement of Science and Technology, Texas (1982) Google Scholar
  88. Linsley, J., Scarsi, L., Rossi, B.: Extremely energetic cosmic-ray event. Phys. Rev. Lett. 6, 485 (1961) ADSCrossRefGoogle Scholar
  89. Lloyd-Evans, J., et al.: Observations of γ-rays >1015 eV from cygnus X-3. Nature 305, 784 (1983) ADSCrossRefGoogle Scholar
  90. Matthews, J.: A Heitler model of extensive air showers. Astropart. Phys. 22, 387 (2005) ADSCrossRefGoogle Scholar
  91. Maze, R.: Étude d’un appareil à grand pouvoir de résolution pour rayons cosmiques. J. Phys. Radium 9(4), 162–168 (1938) MathSciNetCrossRefGoogle Scholar
  92. McCusker, C.B.A., Winn, M.M.: A new method of recording large cosmic-ray air showers. Nuovo Cimento 28, 175 (1963) CrossRefGoogle Scholar
  93. Nagano, M., Watson, A.A.: Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689 (2000) ADSCrossRefGoogle Scholar
  94. Navarra, G.: Cosmic ray composition and hadronic interactions in the knee region. Nucl. Phys. B, Proc. Suppl. 151(1), 79–82 (2006) MathSciNetCrossRefGoogle Scholar
  95. Nikolsky, S.I.: In: Proceedings of 5th Interamerican Seminar on Cosmic Rays, vol. 2. Universidad Mayor de San Andreas, La Paz, Bolivia (1962) Google Scholar
  96. Olbert, S.: Theory of high-energy N-component cascades. Ann. Phys. 1, 247–269 (1957) MathSciNetADSzbMATHCrossRefGoogle Scholar
  97. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965) ADSCrossRefGoogle Scholar
  98. Peters, B.: Primary cosmic radiation and extensive air showers. Nuovo Cimento 22, 800 (1961) CrossRefGoogle Scholar
  99. Pfotzer, G.: Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphere. Z. Phys. 102, 41 (1936) ADSCrossRefGoogle Scholar
  100. Porter, N.A., et al.: Philos. Mag. 3, 826 (1958) ADSCrossRefGoogle Scholar
  101. Regener, E., Ehmert, A.: Über die Schauer der kosmischen Ultrastrahlung in der Stratosphäre. Z. Phys. 111, 501 (1938) ADSGoogle Scholar
  102. Regener, E., Pfotzer, G.: Vertical intensity of cosmic rays by treefold coincidences in the stratosphere. Nature 136, 718 (1935) ADSCrossRefGoogle Scholar
  103. Rossi, B.: Method of registering multiple simultaneous impulses of several Geiger’s counters. Nature 125, 636 (1930) ADSCrossRefGoogle Scholar
  104. Rossi, B.: Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau. Z. Phys. 82, 151 (1933) ADSCrossRefGoogle Scholar
  105. Rossi, B.: Misure sulla distribuzione angolare di intensita della radiazione penetrante all’ Asmara. Suppl. Ric. Sci. 1, 579 (1934) Google Scholar
  106. Rossi, B.: In: Sekido, Y., Elliot, H. (eds.) Early History of Cosmic Ray Studies. Reidel, Dordrecht (1985) Google Scholar
  107. Rossi, B., Greisen, K.: Cosmic-ray theory. Rev. Mod. Phys. 13, 240 (1941) ADSCrossRefGoogle Scholar
  108. Saltzberg, D., et al.: Observation of the Askaryan effect: coherent microwave Cherenkov emission. Phys. Rev. Lett. 86, 2802 (2001) ADSCrossRefGoogle Scholar
  109. Samorski, M., Stamm, W.: Detection of 2×1015 to 2×1016 eV γ-rays from Cygnus X-3. Astrophys. J. 268, L17 (1983) ADSCrossRefGoogle Scholar
  110. Schmeiser, K., Bothe, W.: Die harten Ultrastrahlschauer. Ann. Phys. 424, 161 (1938) CrossRefGoogle Scholar
  111. Skobeltzyn, D.V.: Die Intensitätsverteilung in dem Spektrum der γ-Strahlen von RaC. Z. Phys. 43, 354 (1927) ADSCrossRefGoogle Scholar
  112. Skobeltzyn, D.V.: Über eine neue Art sehr schneller β-Strahlen. Z. Phys. 54, 686 (1929) ADSCrossRefGoogle Scholar
  113. Skobeltzyn, D.V., Zatsepin, G.T., Miller, V.V.: The lateral extension of auger showers. Phys. Rev. 71, 315 (1947) ADSCrossRefGoogle Scholar
  114. Sokolsky, P., Thomson, G.B.: Highest energy cosmic rays and results from the HiRes experiment. J. Phys. G 34, R401 (2007) ADSCrossRefGoogle Scholar
  115. Suga, K.: In: Proceedings of 5th Interamerican Seminar on Cosmic Rays, vol. 2. Universidad Mayor de San Andreas, La Paz, Bolivia (1962) Google Scholar
  116. Suga, K., Clark, G.W., Escobar, I.: Scintillation detector of 4 m2 area and transistorized amplifier with logarithmic response. Rev. Sci. Instrum. 32, 1187 (1961) ADSCrossRefGoogle Scholar
  117. Usoskin, I.G., Kovaltsov, G.A.: Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res. 111, D21 (2006) CrossRefGoogle Scholar
  118. Wilson, R.R.: Monte Carlo study of shower production. Phys. Rev. 86(3), 261 (1952) ADSCrossRefGoogle Scholar
  119. Winn, M.M., et al.: The cosmic-ray energy spectrum above 1017 eV. J. Phys. G 12, 653 (1986a) ADSCrossRefGoogle Scholar
  120. Winn, M.M., et al.: The arrival directions of cosmic rays above 1017 eV. J. Phys. G 12, 675 (1986b) ADSCrossRefGoogle Scholar
  121. Zatsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78 (1966) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity WuppertalWuppertalGermany
  2. 2.School of Physics and AstronomyUniversity of LeedsLeedsUK

Personalised recommendations