From the Discovery of Radioactivity to the First Accelerator Experiments

  • Michael WalterEmail author


The chapter reviews the historical phases of cosmic ray research from the very beginning around 1900 until the 1940s when first particle accelerators replaced cosmic particles as source for elementary particle interactions. In opposite to the discovery of X-rays or the ionising α-, β- and γ-rays, it was an arduous path to the definite acceptance of the new radiation. The starting point was the explanation that air becomes conductive by the ionising radiation of radioactive elements in the surroundings. In the following years the penetration power of the radiation was studied with the result, that there seems be a component harder than the known γ-rays. Victor F. Hess did in 1912 the key experiment with a hydrogen balloon. He measured with three detectors an increase of ionisation up to altitudes of 5 300 m and discovered the extraterrestrial penetrating radiation. The next phase is characterised by W. Kolhörster’s confirmation in 1914, doubts by R.A. Millikan and others as well as the spectacular re-discovery of cosmic rays by Millikan in 1926. With the invention of new detectors as the cloud chamber and the Geiger–Müller counter and of the coincidence method the properties of cosmic rays could be investigated. One of the striking results was the discovery that cosmic rays are of corpuscular nature. The broad research activities starting end of the 1920s were the begin of a scientific success story, which nobody of the early protagonists might have imagined. In 1932 C.D. Anderson discovered the antiparticle of the electron. It was the birth of elementary particle physics. Four years later the muon was discovered which was for many years wrongly assumed to be the carrier of the short range nuclear force predicted by H. Yukawa. One of the last high-lights before the particle accelerators took over this field of fundamental research was the discovery of the Yukawa particle. In photographic emulsions exposed by cosmic particles the pion was found in 1947. This part of the story ends with first accelerator experiments performed at the Berkeley synchro-cyclotron.


Photographic Emulsion Cosmic Radiation Elementary Particle Physic Cloud Chamber Accelerator Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, C.D.: The positive electron. Phys. Rev. 43, 491–494 (1933) ADSCrossRefGoogle Scholar
  2. Anderson, C.D.: Unraveling the particle content of cosmic rays. In: Brown, L.M., Hoddeson, L. (eds.) The Birth of Particle Physics, pp. 1–412. Cambridge University Press, Cambridge (1983) Google Scholar
  3. Armenteros, R., et al.: Decay of V-particles. Nature 167, 501–503 (1951) ADSCrossRefGoogle Scholar
  4. Baade, W., Zwicky, F.: On super-novae. Proc. Natl. Acad. Sci. USA 20, 254–259 (1934a) ADSCrossRefGoogle Scholar
  5. Baade, W., Zwicky, F.: Cosmic rays from super-novae. Proc. Natl. Acad. Sci. USA 20, 259–263 (1934b) ADSCrossRefGoogle Scholar
  6. Barkas, W.H., et al.: Meson to proton mass ratios. Phys. Rev. 82, 102–103 (1951) ADSCrossRefGoogle Scholar
  7. Bjorklund, R., et al.: High energy photons from proton–nucleon collisions. Phys. Rev. 77, 213–218 (1950) ADSCrossRefGoogle Scholar
  8. Blackett, P.M.S., Occhialini, G.: Some photographs of the tracks of penetrating radiation. Proc. R. Soc. Lond. Ser. A 139, 699–726 (1933) ADSCrossRefGoogle Scholar
  9. Blau, M., Wambacher, H.: Disintegration processes by cosmic rays with the simultaneous emission of several heavy particles. Nature 140, 585 (1937) ADSCrossRefGoogle Scholar
  10. Bothe, W.: Zur Vereinfachung von Koinzidenzzählungen. Z. Phys. 59, 1–5 (1929) ADSGoogle Scholar
  11. Bothe, W., Kolhörster, W.: Das Wesen der Höhenstrahlung. Z. Phys. 56, 751–777 (1929) ADSzbMATHCrossRefGoogle Scholar
  12. Brown, R., et al.: Observations with electron-sensitive plates exposed to cosmic radiation. Nature 163, 47–51 and 82–86 (1949) ADSCrossRefGoogle Scholar
  13. Brown, L.M., Hoddeson, L. (eds.): The Birth of Particle Physics. Cambridge University Press, Cambridge (1983) Google Scholar
  14. Clay, J.: Penetrating radiation. Proc. R. Soc. Amst. 30, 1115–1127 (1927) Google Scholar
  15. Clay, J., Berlage, H.P.: Variation der Ultrastrahlung mit der geographischen Breite und dem Erdmagnetismus. Naturwissenschaften 20, 687–688 (1932) ADSCrossRefGoogle Scholar
  16. Compton, A.H.: Variation of the cosmic rays with latitude. Phys. Rev. 41, 111–113 (1932) ADSCrossRefGoogle Scholar
  17. Compton, A.H.: A geographic study of cosmic rays. Phys. Rev. 43, 387–403 (1933) ADSCrossRefGoogle Scholar
  18. Conversi, M., Pancini, E., Piccioni, O.: On the decay process of positive and negative mesons. Phys. Rev. 68, 232 (1945) ADSCrossRefGoogle Scholar
  19. Cooke, H.L.: A penetrating radiation from the earth’s surface. Philos. Mag. 34, 403–411 (1903) Google Scholar
  20. De Broglie, M., De Broglie, L.: Einführung in die Physik der Röntgen- und Gamma-Strahlen, pp. 1–205. Verlag Johann Ambrosius, Barth/Leipzig (1930) Google Scholar
  21. Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. Lond. Ser. A 126, 360–365 (1930) ADSzbMATHCrossRefGoogle Scholar
  22. Elster, J., Geitel, H.: Weitere Versuche über die Elektrizitätszerstreuung in abgeschlossenen Luftmengen. Phys. Z. 2, 560–563 (1901) Google Scholar
  23. Eve, A.S.: On the radioactive matter in the earth and the atmosphere. Philos. Mag. 12, 189–200 (1906) CrossRefGoogle Scholar
  24. Forbush, S.E., Lange, I.: Further note on the effect on cosmic-ray intensity of the magnetic storm of March 1. Terr. Magn. Atmos. Electr. 47, 331–334 (1942) CrossRefGoogle Scholar
  25. Fricke, R.: J. Elster & H. Geitel – Jugendfreunde, Gymnasiallehrer, Wissenschaftler aus Passion, pp. 1–159. Döring Druck, Druckerei und Verlag, Braunschweig (1992) Google Scholar
  26. Fricke, R.: Günther & Tegetmeyer 1901–1958, pp. 1–299. AF-Verlag, Wolfenbüttel (2011) Google Scholar
  27. Geiger, H., Müller, W.: Elektronenzählrohr zur Messung schwächster Aktivitäten. Naturwissenschaften 16, 617–618 (1928) ADSCrossRefGoogle Scholar
  28. Geitel, H.: Über die Elektrizitätszerstreuung in abgeschlossenen Luftmengen. Phys. Z. 2, 116–119 (1900) Google Scholar
  29. Gockel, A., Wulf, Th.: Beobachtungen über die Radioaktivität der Atmosphäre im Hochgebirge. Phys. Z. 9, 907–911 (1908) Google Scholar
  30. Gockel, A.: Luftelektrische Beobachtungen bei einer Ballonfahrt. Phys. Z. 11, 280–282 (1910) Google Scholar
  31. Gockel, A.: Beiträge zur Kenntnis der in der Atmosphäre vorhandenen durchdringenden Strahlung. Phys. Z. 16, 345–352 (1915) Google Scholar
  32. Hess, V.F.: Über die Absorption der γ-Strahlen in der Atmosphäre. Phys. Z. 12, 998–1001 (1911) Google Scholar
  33. Hess, V.F.: Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13, 1084–1091 (1912) Google Scholar
  34. Hess, V.F.: Über Neuerungen und Erfahrungen an den Radiummessungen nach der Gamma-Strahlenmethode. Phys. Z. 14, 1135–1141 (1913) Google Scholar
  35. Hess, V.F., Kofler, M.: Ganzjärige Beobachtungen der durchdringenden Strahlung auf dem Obir (2044 m). Phys. Z. 18, 585–595 (1917) Google Scholar
  36. Hess, V.F.: Über den Ursprung der Höhenstrahlung. Phys. Z. 18, 159–163 (1926) Google Scholar
  37. Johnson, Th.H.: Cosmic ray intensity and geomagnetic effects. Rev. Mod. Phys. 10, 193–244 (1938) ADSCrossRefGoogle Scholar
  38. Kolhörster, W.: Messungen der durchdringenden Strahlung im Freiballon in grösseren Höhen. Phys. Z. 14, 1153–1155 (1913) Google Scholar
  39. Kolhörster, W.: Messungen der durchdringenden Strahlungen bis in Höhen von 9300 m. Verh. Dtsch. Phys. Ges. 16, 719–721 (1914) Google Scholar
  40. Kolhörster, W.: Messungen der durchdringenden Strahlung während der Sonnenfinsternis vom 21 August 1914. Naturwissenschaften 7, 412–415 (1919) ADSCrossRefGoogle Scholar
  41. Kolhörster, W., Salis, G.v.: Intensitäts- und Richtungsmessung der durchdringenden Strahlung. Sitz.ber. Preuss. Akad. Wiss. 34, 366–379 (1923) Google Scholar
  42. Kolhörster, W.: Bemerkungen zu der Arbeit von R.A. Millikan: “Kurzwellige Strahlen kosmischen Ursprungs”. Ann. Phys. 14, 621–628 (1926) CrossRefGoogle Scholar
  43. Kolhörster, W.: Die durchdringende Strahlung in der Atmosphäre. In: Wegener, A. (ed.) Physik der Erde, pp. 565–580. Vieweg, Braunschweig (1928) Google Scholar
  44. Kunze, P.: Magnetische Ablenkung der Ultrastrahlen in der Wilsonkammer. Z. Phys. 80, 559–572 (1933a) ADSCrossRefGoogle Scholar
  45. Kunze, P.: Untersuchung der Ultrastrahlung in der Wilsonkammer. Z. Phys. 83, 1–18 (1933b) ADSCrossRefGoogle Scholar
  46. Lattes, C.M.G., et al.: Processes involving charged mesons. Nature 159, 694–697 (1947) ADSCrossRefGoogle Scholar
  47. Linke, F.: Luftelektrische Messungen bei zwölf Ballonfahrten. Abh. Ges. Wiss. Göttingen 3, 1–90 (1904) Google Scholar
  48. Menon, M.G.K., O‘Ceallaigh, C.: Observations on the decay of heavy mesons in photographic emulsions. Proc. R. Soc. A 221, 295–318 (1954) ADSCrossRefGoogle Scholar
  49. Miehlnickel, E.: Höhenstrahlung, pp. 1–313. Verlag von Theodor Steinkopf, Dresden und Leipzig (1938) Google Scholar
  50. Millikan, R.A., Bowen, I.S.: High frequency rays of cosmic origin I. Sounding balloon observations at extreme altitudes. Phys. Rev. 27, 353–363 (1926) ADSCrossRefGoogle Scholar
  51. Millikan, R.A., Cameron, G.H.: High frequency rays of cosmic origin III. Measurements in Snow-Fed lakes at high altitudes. Phys. Rev. 28, 851–869 (1926) ADSCrossRefGoogle Scholar
  52. Myssowsky, L., Tuwim, L.: Unregelmässige Intensitätschwankungen der Höhenstrahlung in geringer Seehöhe. Phys. Z. 39, 146–150 (1926) ADSCrossRefGoogle Scholar
  53. Neddermeyer, S.H., Anderson, C.D.: Cosmic ray particles of intermediate mass. Phys. Rev. 54, 88–89 (1938) ADSCrossRefGoogle Scholar
  54. Nernst, W.: Das Weltgebäude im Lichte der Forschung, pp. 1–63. Springer, Berlin (1921) zbMATHCrossRefGoogle Scholar
  55. NY-Times Editorial: Millikan rays. New York Times, November 12 (1925) Google Scholar
  56. Occhialini, G.P.S., Powell, C.F.: Nuclear disintegrations produced by slow charged particles of small mass. Nature 159, 186–190 (1947) ADSCrossRefGoogle Scholar
  57. Pacini, D.: Penetrating radiation on the sea. Le Radium 8, 307–312 (1910). See also De Maria, M., De Angelis, A.: arXiv:1101.3015v3 (2011) CrossRefGoogle Scholar
  58. Pacini, D.: Penetrating radiation at the surface of and in water. Nuovo Cimento 6, 93–100 (1912). See also De Angelis, A.: arXiv:1002.1810v2 (2011) Google Scholar
  59. Panofsky, W.K.H., et al.: The gamma-ray spectrum from the absorption of π-mesons in hydrogen. Phys. Rev. 78, 825–826 (1950) ADSCrossRefGoogle Scholar
  60. Perkins, D.H.: Nuclear disintegration by meson capture. Nature 159, 126–127 (1947) ADSCrossRefGoogle Scholar
  61. Piccard, A., Stahel, E., Kipfer, P.: Messung der Ultrastrahlung in 16000 m Höhe. Naturwissenschaften 20, 592–593 (1932) ADSCrossRefGoogle Scholar
  62. Powell, B.B.: Mesons. Rep. Prog. Phys., 13, 350–424 (1950) ADSCrossRefGoogle Scholar
  63. Rasetti, F.: Disintegration of slow mesotrons. Phys. Rev. 60, 198–204 (1941) ADSCrossRefGoogle Scholar
  64. Regener, E.: Über das Spektrum der Ultrastrahlung. Z. Phys. 74, 433–454 (1932a) ADSCrossRefGoogle Scholar
  65. Regener, E.: Messung der Ultrastrahlung in der Stratosphäre. Naturwissenschaften 20, 695–699 (1932b) ADSCrossRefGoogle Scholar
  66. Richardson, O.W.: Diurnal variation of ionisation in closed vessels. Nature 73, 607 (1906) ADSCrossRefGoogle Scholar
  67. Richardson, J.R.: The lifetime of the heavy meson. Phys. Rev. 74, 1720–1721 (1948) ADSCrossRefGoogle Scholar
  68. Richman, C., Wilcox, H.: Production cross sections for π + and π mesons by 345 MeV protons on carbon at 90° to the beam. Phys. Rev. 78, 496 (1950) ADSCrossRefGoogle Scholar
  69. Rochester, G.D., Butler, C.C.: Evidence for the existence of new unstable elementary particles. Nature 160, 855–857 (1947) ADSCrossRefGoogle Scholar
  70. Rossi, B.B.: The decay of “Mesotrons” (1939–1943): experimental particle physics in the age of innocence. In: Brown, L.M., Hoddeson, L. (eds.) The Birth of Particle Physics, pp. 1–412. Cambridge University Press, Cambridge (1983) Google Scholar
  71. von Schweidler, E.: Über die möglichen Quellen der Hessschen Strahlung. In: Bergwitz, K. (ed.) Elster- und Geitel Festschrift, pp. 1–719. Vieweg, Braunschweig (1915) Google Scholar
  72. Science: Millikan rays. Science 62, 461–462 (November 20, 1925) Google Scholar
  73. Sekido, Y., Elliot, H. (eds.): Early History of Cosmic Ray Studies, pp. 1–408. Reidel, Dordrecht (1985) Google Scholar
  74. Simpson, G.C., Wright, C.S.: Atmospheric electricity over the ocean. Proc. R. Soc. A 85, 175–199 (1911) ADSCrossRefGoogle Scholar
  75. Skobeltzyn, D.: Die Intensitätsverteilung in dem Spektrum der γ-Strahlen von RaC. Z. Phys. 43, 354–378 (1927) ADSCrossRefGoogle Scholar
  76. Skobeltzyn, D.: Über eine neue Art sehr schneller β-Strahlen. Z. Phys. 54, 686–703 (1929) ADSCrossRefGoogle Scholar
  77. Williams, E.J., Roberts, G.E.: Evidence for transformation of mesotrons into electrons. Nature 145, 102–103 (1940) ADSCrossRefGoogle Scholar
  78. Wilson, C.T.R.: On the leakage of electricity through dust-free air. Proc. Camb. Philos. Soc. 11, 52 (1900) Google Scholar
  79. Wilson, C.T.R.: On the ionisation of atmospheric air. Proc. R. Soc. Lond. 68, 151–161 (1901) CrossRefGoogle Scholar
  80. Wilson, C.T.R.: On a method of making visible the paths of ionising particles through a gas. Proc. R. Soc. Lond. A 85, 285–288 (1911) ADSCrossRefGoogle Scholar
  81. Wilson, C.T.R.: On an expansion apparatus for making visible the tracks of ionising particles in gases and some results obtained by its use. Proc. R. Soc. Lond. A 87, 277–297 (1912) ADSCrossRefGoogle Scholar
  82. Wulf, Th.: Über die in der Atmosphäre vorhandene Strahlung von hoher Durchdringungsfähigkeit. Phys. Z. 10, 152–157 (1909a) Google Scholar
  83. Wulf, Th.: Über den Ursprung der in der Atmosphäre vorhandenen γ-Strahlung. Phys. Z. 10, 997–1003 (1909b) Google Scholar
  84. Wulf, Th.: Beobachtungen über Strahlung hoher Durchdringungsfähigkeit auf dem Eiffelturm. Phys. Z. 11, 811–813 (1910) Google Scholar
  85. York, C.M., Leighton, R.B., Bjonerud, E.K.: Direct experimental evidence for the existence of a heavy positive V particle. Phys. Rev. 90, 167–168 (1953) ADSCrossRefGoogle Scholar
  86. Yukawa, H.: On the interaction of elementary particles. Proc. Phys. Math. Soc. Jpn. 17, 48–57 (1935) Google Scholar
  87. Yukawa, H., Sakata, S., Taketani, M.: On the interaction of elementary particles IV. Proc. Phys. Math. Soc. Jpn. 20, 720–745 (1938) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.DESYZeuthenGermany

Personalised recommendations