Skip to main content

Organic Codes and the Natural History of Mind

Part of the Biosemiotics book series (BSEM,volume 8)

Abstract

The purpose of this chapter is to show that organic codes played a key role in the origin and the evolution of mind as they had in all other great events of macroevolution. The presence of molecular adaptors has shown that the genetic code was only the first of a long series of codes in the history of life, and it is possible therefore that the origin of mind was associated with the appearance of new organic codes. This would cast a new light on mind and would give us a new theoretical framework for studying it. The scientific models that have been proposed so far on the nature of mind can be divided into three major groups that here are referred to as the computational theory, the connectionist theory and the emergence theory. The new approach is based on the idea that a neural code contributed to the origin of mind somehow like the genetic code contributed to the origin of life. This is the code model of mind, the idea that mental objects are assembled from brain components according to coding rules, which means that they are no longer brain objects but brain artefacts. The model implies that feelings and perceptions are not side effects of neural networks (as in connectionism), that they do not come into existence spontaneously by emergence and that they are not the result of computations, but of real manufacturing processes. In the framework of the code model, in short, feelings and perceptions are manufactured artefacts, whereas according to the other theories, they are spontaneous products of brain processes. This is relevant to the mind-body problem because if the mind were made of spontaneous products, it could not have rules of its own. Artefacts, on the other hand, can have such autonomous properties for two different reasons. One is that the rules of a code are conventions, and these are not dictated by physical necessity. The second is that a world of artefacts can have epigenetic properties that add unexpected features to the coding rules. The autonomy of the mind, in short, is something that spontaneous brain products cannot achieve whereas brain artefacts can.

Keywords

  • Organic codes
  • Macroevolution
  • Origin of brain
  • Origin of mind
  • Semiosis
  • Modelling systems
  • First-person experiences

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-5419-5_2
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-5419-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular biology of the cell. New York: Garland.

    Google Scholar 

  • Baker, M. (2001). The atoms of language. The mind’s hidden rules of grammar. New York: Basic Books.

    Google Scholar 

  • Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B. J., & Frey, B. J. (2010). Deciphering the splicing code. Nature, 465, 53–59.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barbieri, M. (1981). The ribotype theory on the origin of life. Journal of Theoretical Biology, 91, 545–601.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barbieri, M. (1985). The semantic theory of evolution. London/New York: Harwood Academic Publishers.

    Google Scholar 

  • Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2006). Semantic biology and the mind-body problem-the theory of the conventional mind. Biological Theory, 1(4), 352–356.

    CrossRef  Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: A new understanding of life. Naturwissenschaften, 95, 577–599.

    PubMed  CrossRef  CAS  Google Scholar 

  • Barbieri, M. (2010). On the origin of language. Biosemiotics, 3, 201–223.

    CrossRef  Google Scholar 

  • Bickerton, D. (1981). The roots of language. Karoma: Ann Arbour.

    Google Scholar 

  • Boeckx, C. (2006). Linguistic minimalism. New York: Oxford University Press.

    Google Scholar 

  • Boutanaev, A. M., Mikhaylova, L. M., & Nurminsky, D. I. (2005). The pattern of chromosome folding in interphase is outlined by the linear gene density profile. Molecular and Cell Biology, 18, 8379–8386.

    CrossRef  Google Scholar 

  • Changeaux, J.-P. (1983). L’Homme Neuronal. Paris: Librairie Arthème Fayard.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chomsky, N. (1975). The logical structure of linguistic theory. Chicago: University of Chicago Press.

    Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.

    CrossRef  Google Scholar 

  • Churchland, P. S., & Sejnowski, T. J. (1993). The computational brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Crick, F. (1994). The astonishing hypothesis: The scientific search for the soul. New York: Scribner.

    Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • DeHaan, R. L. (1959). Cardia bifida and the development of pacemaker function in the early chicken heart. Developmental Biology, 1, 586–602.

    CrossRef  Google Scholar 

  • Dhir, A., Emanuele Buratti, E., van Santen, M. A., Lührmann, R., & Baralle, F. E. (2010). The intronic splicing code: Multiple factors involved in ATM pseudoexon definition. The EMBO Journal, 29, 749–760.

    PubMed  CrossRef  CAS  Google Scholar 

  • Edelman, G. M. (1989). Neural darwinism. The theory of neuronal group selection. New York: Oxford University Press.

    Google Scholar 

  • Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27(36), 9682–9695.

    PubMed  CrossRef  CAS  Google Scholar 

  • Fodor, J. (1975). The language of thought. New York: Thomas Crowell Co.

    Google Scholar 

  • Fodor, J. (1983). The modularity of mind. An essay on faculty psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: The sugar code. Naturwissenschaften, 87, 108–121.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gabius, H.-J., André, S., Kaltner, H., & Siebert, H.-C. (2002). The sugar code: Functional lectinomics. Biochimica et Biophysica Acta, 1572, 165–177.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gamble, M. J., & Freedman, L. P. (2002). A coactivator code for transcription. TRENDS in Biochemical Sciences, 27(4), 165–167.

    PubMed  CrossRef  CAS  Google Scholar 

  • Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer.

    Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behaviour. New York: John Wiley.

    Google Scholar 

  • Hilschmann, N., Barnikol, H. U., Barnikol-Watanabe, S., Götz, H., Kratzin, H., & Thinness, F. P. (2001). The immunoglobulin-like genetic predetermination of the brain: The protocadherins, blueprint of the neuronal network. Naturwissenschaften, 88, 2–12.

    PubMed  CrossRef  CAS  Google Scholar 

  • Holland, J. A. (1992). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79, 2554–2558.

    CrossRef  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241(3), 150–182.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jacob, F. (1982). The possible and the actual. New York: Pantheon Books.

    Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jessell, T. M. (2000). Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nature Genetics, 1, 20–29.

    CrossRef  CAS  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Knights, C. D., Catania, J., Di Giovanni, S., Muratoglu, S., et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. Journal of Cell Biology, 173, 533–544.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kohonen, T. (1984). Self-organization and associative memory. New York: Springer.

    Google Scholar 

  • Levi-Montalcini, R. (1975). NGF: An uncharted route. In F. G. Worden (Ed.), The neurosciences – Paths of discoveries. Cambridge, MA: MIT Press.

    Google Scholar 

  • Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237, 1154–1162.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lotman, J. (1991). Universe of the mind: A semiotic theory of culture. Bloomington: Indiana University Press.

    Google Scholar 

  • Marquardt, T., & Pfaff, S. L. (2001). Cracking the transcriptional code for cell specification in the neural tube. Cell, 106, 651–654.

    PubMed  CrossRef  CAS  Google Scholar 

  • Maslon, L. (1972). Wolf children and the problem of human nature. New York: Monthly Review Press.

    Google Scholar 

  • Morgan, L. C. (1923). Emergent evolution. London: Williams and Norgate.

    Google Scholar 

  • Nicolelis, M., & Ribeiro, S. (2006). Seeking the neural code. Scientific American, 295, 70–77.

    PubMed  CrossRef  Google Scholar 

  • Peirce, C. S. (1906). The basis of pragmaticism. In C. Hartshorne & P. Weiss (Eds.), The collected papers of Charles Sanders Peirce (Vols. I–VI). Cambridge, MA: Harvard University Press. 1931–1935.

    Google Scholar 

  • Perissi, V., & Rosenfeld, M. G. (2005). Controlling nuclear receptors: The circular logic of cofactor cycles. Nature Molecular Cell Biology, 6, 542–554.

    CrossRef  CAS  Google Scholar 

  • Pertea, M., Mount, S. M., & Salzberg, S. L. (2007). A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics, 8, 159.

    PubMed  CrossRef  Google Scholar 

  • Portmann, A. (1941). Die Tragzeiten der Primaten und die Dauer der Schwangerschaft beim Menschen: ein Problem der vergleichen Biologie. Revue Suisse de Zoologie, 48, 511–518.

    Google Scholar 

  • Portmann, A. (1945). Die Ontogenese des Menschen als Problem der Evolutionsforschung. Verhhandlungen der Schweizerischen Naturforschenden Gesellschaft, 125, 44–53.

    Google Scholar 

  • Readies, C., & Takeichi, M. (1996). Cadherine in the developing central nervous system: An adhesive code for segmental and functional subdivisions. Developmental Biology, 180, 413–423.

    CrossRef  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Searle, J. R. (1980). Minds, brains and programs. Behavioural Brain Science, 3, 417–457.

    CrossRef  Google Scholar 

  • Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Searle, J. R. (2002). Consciousness and language. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Sebeok, T. A. (1963). Communication among social bees; porpoises and sonar; man and dolphin. Language, 39, 448–466.

    CrossRef  Google Scholar 

  • Sebeok, T. A. (1972). Perspectives in zoosemiotics. The Hague: Mouton.

    Google Scholar 

  • Sebeok, T. A. (1988). I think I am a verb: More contributions to the doctrine of signs. New York: Plenum Press.

    Google Scholar 

  • Sebeok, T. A. (1991). A sign is just a sign. Bloomington: Indiana University Press.

    Google Scholar 

  • Sebeok, T. A. (2001). Biosemiotics: Its roots, proliferation, and prospects. In: K. Kull (Ed.), Jakob von Uexküll: A paradigm for biology and semiotics. Semiotica, 134(1/4), 61–78.

    Google Scholar 

  • Sebeok, T. A., & Danesi, M. (2000). The forms of meaning: Modeling systems theory and semiotic analysis. Berlin: Mouton de Gruyter.

    CrossRef  Google Scholar 

  • Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Fiels, Y., Moore, I. K., Wang, J. P., & Widom, J. (2006). A genomic code for nucleosome positioning. Nature, 442, 772–778.

    PubMed  CrossRef  CAS  Google Scholar 

  • Shapiro, L., & Colman, D. R. (1999). The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron, 23, 427–430.

    PubMed  CrossRef  CAS  Google Scholar 

  • Shattuck, R. (1981). The forbidden experiment: The story of the wild boy of Aveyron. New York: Washington Square Press.

    Google Scholar 

  • Spemann, H. (1901). Entwicklungphysiologische Studien am Tritonei I. Wilhelm Roux’ Archiv für Entwicklungsmechanik, 12, 224–264.

    CrossRef  Google Scholar 

  • Sperry, R. W. (1943). Visuomotor coordination in the newt (Triturus viridescens) after regeneration of the optic nerve. Journal of Comparative Neurology, 79, 33–55.

    CrossRef  Google Scholar 

  • Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fibers patterns and connections. Proceedings of the National Academy of Science USA, 50, 703–710.

    CrossRef  CAS  Google Scholar 

  • Strahl, B. D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tomkins, M. G. (1975). The metabolic code. Science, 189, 760–763.

    PubMed  CrossRef  CAS  Google Scholar 

  • Trifonov, E. N. (1987). Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643–652.

    PubMed  CrossRef  CAS  Google Scholar 

  • Trifonov, E. N. (1989). The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51, 417–432.

    PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1996). Interfering contexts of regulatory sequence elements. Cabios, 12, 423–429.

    PubMed  CAS  Google Scholar 

  • Trifonov, E. N. (1999). Elucidating sequence codes: Three codes for evolution. Annals of the New York Academy of Sciences, 870, 330–338.

    PubMed  CrossRef  CAS  Google Scholar 

  • Tudge, C. (2000). The variety of life. A survey and a celebration of all the creatures that have ever lived. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssay, 22, 836–845.

    CrossRef  CAS  Google Scholar 

  • Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111, 285–291.

    PubMed  CrossRef  CAS  Google Scholar 

  • Verhey, K. J., & Gaertig, J. (2007). The tubulin code. Cell Cycle, 6(17), 2152–2160.

    PubMed  CrossRef  CAS  Google Scholar 

  • von Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin: Julius Springer.

    CrossRef  Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Science USA, 97, 8392–8396.

    CrossRef  CAS  Google Scholar 

  • Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Science USA, 99, 8742–8747.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbieri, M. (2013). Organic Codes and the Natural History of Mind. In: Swan, L. (eds) Origins of Mind. Biosemiotics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5419-5_2

Download citation