Organic Codes and the Natural History of Mind

  • Marcello Barbieri
Part of the Biosemiotics book series (BSEM, volume 8)


The purpose of this chapter is to show that organic codes played a key role in the origin and the evolution of mind as they had in all other great events of macroevolution. The presence of molecular adaptors has shown that the genetic code was only the first of a long series of codes in the history of life, and it is possible therefore that the origin of mind was associated with the appearance of new organic codes. This would cast a new light on mind and would give us a new theoretical framework for studying it. The scientific models that have been proposed so far on the nature of mind can be divided into three major groups that here are referred to as the computational theory, the connectionist theory and the emergence theory. The new approach is based on the idea that a neural code contributed to the origin of mind somehow like the genetic code contributed to the origin of life. This is the code model of mind, the idea that mental objects are assembled from brain components according to coding rules, which means that they are no longer brain objects but brain artefacts. The model implies that feelings and perceptions are not side effects of neural networks (as in connectionism), that they do not come into existence spontaneously by emergence and that they are not the result of computations, but of real manufacturing processes. In the framework of the code model, in short, feelings and perceptions are manufactured artefacts, whereas according to the other theories, they are spontaneous products of brain processes. This is relevant to the mind-body problem because if the mind were made of spontaneous products, it could not have rules of its own. Artefacts, on the other hand, can have such autonomous properties for two different reasons. One is that the rules of a code are conventions, and these are not dictated by physical necessity. The second is that a world of artefacts can have epigenetic properties that add unexpected features to the coding rules. The autonomy of the mind, in short, is something that spontaneous brain products cannot achieve whereas brain artefacts can.


Organic codes Macroevolution Origin of brain Origin of mind Semiosis Modelling systems First-person experiences 


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1994). Molecular biology of the cell. New York: Garland.Google Scholar
  2. Baker, M. (2001). The atoms of language. The mind’s hidden rules of grammar. New York: Basic Books.Google Scholar
  3. Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B. J., & Frey, B. J. (2010). Deciphering the splicing code. Nature, 465, 53–59.PubMedCrossRefGoogle Scholar
  4. Barbieri, M. (1981). The ribotype theory on the origin of life. Journal of Theoretical Biology, 91, 545–601.PubMedCrossRefGoogle Scholar
  5. Barbieri, M. (1985). The semantic theory of evolution. London/New York: Harwood Academic Publishers.Google Scholar
  6. Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.Google Scholar
  7. Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.Google Scholar
  8. Barbieri, M. (2006). Semantic biology and the mind-body problem-the theory of the conventional mind. Biological Theory, 1(4), 352–356.CrossRefGoogle Scholar
  9. Barbieri, M. (2008). Biosemiotics: A new understanding of life. Naturwissenschaften, 95, 577–599.PubMedCrossRefGoogle Scholar
  10. Barbieri, M. (2010). On the origin of language. Biosemiotics, 3, 201–223.CrossRefGoogle Scholar
  11. Bickerton, D. (1981). The roots of language. Karoma: Ann Arbour.Google Scholar
  12. Boeckx, C. (2006). Linguistic minimalism. New York: Oxford University Press.Google Scholar
  13. Boutanaev, A. M., Mikhaylova, L. M., & Nurminsky, D. I. (2005). The pattern of chromosome folding in interphase is outlined by the linear gene density profile. Molecular and Cell Biology, 18, 8379–8386.CrossRefGoogle Scholar
  14. Changeaux, J.-P. (1983). L’Homme Neuronal. Paris: Librairie Arthème Fayard.Google Scholar
  15. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
  16. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
  17. Chomsky, N. (1975). The logical structure of linguistic theory. Chicago: University of Chicago Press.Google Scholar
  18. Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.Google Scholar
  19. Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.CrossRefGoogle Scholar
  20. Churchland, P. S., & Sejnowski, T. J. (1993). The computational brain. Cambridge, MA: MIT Press.Google Scholar
  21. Crick, F. (1994). The astonishing hypothesis: The scientific search for the soul. New York: Scribner.Google Scholar
  22. Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: Norton.Google Scholar
  23. DeHaan, R. L. (1959). Cardia bifida and the development of pacemaker function in the early chicken heart. Developmental Biology, 1, 586–602.CrossRefGoogle Scholar
  24. Dhir, A., Emanuele Buratti, E., van Santen, M. A., Lührmann, R., & Baralle, F. E. (2010). The intronic splicing code: Multiple factors involved in ATM pseudoexon definition. The EMBO Journal, 29, 749–760.PubMedCrossRefGoogle Scholar
  25. Edelman, G. M. (1989). Neural darwinism. The theory of neuronal group selection. New York: Oxford University Press.Google Scholar
  26. Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27(36), 9682–9695.PubMedCrossRefGoogle Scholar
  27. Fodor, J. (1975). The language of thought. New York: Thomas Crowell Co.Google Scholar
  28. Fodor, J. (1983). The modularity of mind. An essay on faculty psychology. Cambridge, MA: MIT Press.Google Scholar
  29. Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: The sugar code. Naturwissenschaften, 87, 108–121.PubMedCrossRefGoogle Scholar
  30. Gabius, H.-J., André, S., Kaltner, H., & Siebert, H.-C. (2002). The sugar code: Functional lectinomics. Biochimica et Biophysica Acta, 1572, 165–177.PubMedCrossRefGoogle Scholar
  31. Gamble, M. J., & Freedman, L. P. (2002). A coactivator code for transcription. TRENDS in Biochemical Sciences, 27(4), 165–167.PubMedCrossRefGoogle Scholar
  32. Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer.Google Scholar
  33. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  34. Hebb, D. O. (1949). The organization of behaviour. New York: John Wiley.Google Scholar
  35. Hilschmann, N., Barnikol, H. U., Barnikol-Watanabe, S., Götz, H., Kratzin, H., & Thinness, F. P. (2001). The immunoglobulin-like genetic predetermination of the brain: The protocadherins, blueprint of the neuronal network. Naturwissenschaften, 88, 2–12.PubMedCrossRefGoogle Scholar
  36. Holland, J. A. (1992). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.Google Scholar
  37. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79, 2554–2558.CrossRefGoogle Scholar
  38. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMedGoogle Scholar
  39. Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241(3), 150–182.PubMedCrossRefGoogle Scholar
  40. Jacob, F. (1982). The possible and the actual. New York: Pantheon Books.Google Scholar
  41. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.PubMedCrossRefGoogle Scholar
  42. Jessell, T. M. (2000). Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nature Genetics, 1, 20–29.CrossRefGoogle Scholar
  43. Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  44. Knights, C. D., Catania, J., Di Giovanni, S., Muratoglu, S., et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. Journal of Cell Biology, 173, 533–544.PubMedCrossRefGoogle Scholar
  45. Kohonen, T. (1984). Self-organization and associative memory. New York: Springer.Google Scholar
  46. Levi-Montalcini, R. (1975). NGF: An uncharted route. In F. G. Worden (Ed.), The neurosciences – Paths of discoveries. Cambridge, MA: MIT Press.Google Scholar
  47. Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237, 1154–1162.PubMedCrossRefGoogle Scholar
  48. Lotman, J. (1991). Universe of the mind: A semiotic theory of culture. Bloomington: Indiana University Press.Google Scholar
  49. Marquardt, T., & Pfaff, S. L. (2001). Cracking the transcriptional code for cell specification in the neural tube. Cell, 106, 651–654.PubMedCrossRefGoogle Scholar
  50. Maslon, L. (1972). Wolf children and the problem of human nature. New York: Monthly Review Press.Google Scholar
  51. Morgan, L. C. (1923). Emergent evolution. London: Williams and Norgate.Google Scholar
  52. Nicolelis, M., & Ribeiro, S. (2006). Seeking the neural code. Scientific American, 295, 70–77.PubMedCrossRefGoogle Scholar
  53. Peirce, C. S. (1906). The basis of pragmaticism. In C. Hartshorne & P. Weiss (Eds.), The collected papers of Charles Sanders Peirce (Vols. I–VI). Cambridge, MA: Harvard University Press. 1931–1935.Google Scholar
  54. Perissi, V., & Rosenfeld, M. G. (2005). Controlling nuclear receptors: The circular logic of cofactor cycles. Nature Molecular Cell Biology, 6, 542–554.CrossRefGoogle Scholar
  55. Pertea, M., Mount, S. M., & Salzberg, S. L. (2007). A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics, 8, 159.PubMedCrossRefGoogle Scholar
  56. Portmann, A. (1941). Die Tragzeiten der Primaten und die Dauer der Schwangerschaft beim Menschen: ein Problem der vergleichen Biologie. Revue Suisse de Zoologie, 48, 511–518.Google Scholar
  57. Portmann, A. (1945). Die Ontogenese des Menschen als Problem der Evolutionsforschung. Verhhandlungen der Schweizerischen Naturforschenden Gesellschaft, 125, 44–53.Google Scholar
  58. Readies, C., & Takeichi, M. (1996). Cadherine in the developing central nervous system: An adhesive code for segmental and functional subdivisions. Developmental Biology, 180, 413–423.CrossRefGoogle Scholar
  59. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  60. Searle, J. R. (1980). Minds, brains and programs. Behavioural Brain Science, 3, 417–457.CrossRefGoogle Scholar
  61. Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.Google Scholar
  62. Searle, J. R. (2002). Consciousness and language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Sebeok, T. A. (1963). Communication among social bees; porpoises and sonar; man and dolphin. Language, 39, 448–466.CrossRefGoogle Scholar
  64. Sebeok, T. A. (1972). Perspectives in zoosemiotics. The Hague: Mouton.Google Scholar
  65. Sebeok, T. A. (1988). I think I am a verb: More contributions to the doctrine of signs. New York: Plenum Press.Google Scholar
  66. Sebeok, T. A. (1991). A sign is just a sign. Bloomington: Indiana University Press.Google Scholar
  67. Sebeok, T. A. (2001). Biosemiotics: Its roots, proliferation, and prospects. In: K. Kull (Ed.), Jakob von Uexküll: A paradigm for biology and semiotics. Semiotica, 134(1/4), 61–78.Google Scholar
  68. Sebeok, T. A., & Danesi, M. (2000). The forms of meaning: Modeling systems theory and semiotic analysis. Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
  69. Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Fiels, Y., Moore, I. K., Wang, J. P., & Widom, J. (2006). A genomic code for nucleosome positioning. Nature, 442, 772–778.PubMedCrossRefGoogle Scholar
  70. Shapiro, L., & Colman, D. R. (1999). The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron, 23, 427–430.PubMedCrossRefGoogle Scholar
  71. Shattuck, R. (1981). The forbidden experiment: The story of the wild boy of Aveyron. New York: Washington Square Press.Google Scholar
  72. Spemann, H. (1901). Entwicklungphysiologische Studien am Tritonei I. Wilhelm Roux’ Archiv für Entwicklungsmechanik, 12, 224–264.CrossRefGoogle Scholar
  73. Sperry, R. W. (1943). Visuomotor coordination in the newt (Triturus viridescens) after regeneration of the optic nerve. Journal of Comparative Neurology, 79, 33–55.CrossRefGoogle Scholar
  74. Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fibers patterns and connections. Proceedings of the National Academy of Science USA, 50, 703–710.CrossRefGoogle Scholar
  75. Strahl, B. D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.PubMedCrossRefGoogle Scholar
  76. Tomkins, M. G. (1975). The metabolic code. Science, 189, 760–763.PubMedCrossRefGoogle Scholar
  77. Trifonov, E. N. (1987). Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643–652.PubMedCrossRefGoogle Scholar
  78. Trifonov, E. N. (1989). The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51, 417–432.PubMedGoogle Scholar
  79. Trifonov, E. N. (1996). Interfering contexts of regulatory sequence elements. Cabios, 12, 423–429.PubMedGoogle Scholar
  80. Trifonov, E. N. (1999). Elucidating sequence codes: Three codes for evolution. Annals of the New York Academy of Sciences, 870, 330–338.PubMedCrossRefGoogle Scholar
  81. Tudge, C. (2000). The variety of life. A survey and a celebration of all the creatures that have ever lived. Oxford/New York: Oxford University Press.Google Scholar
  82. Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssay, 22, 836–845.CrossRefGoogle Scholar
  83. Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111, 285–291.PubMedCrossRefGoogle Scholar
  84. Verhey, K. J., & Gaertig, J. (2007). The tubulin code. Cell Cycle, 6(17), 2152–2160.PubMedCrossRefGoogle Scholar
  85. von Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin: Julius Springer.CrossRefGoogle Scholar
  86. Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51, 221–271.PubMedGoogle Scholar
  87. Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Science USA, 97, 8392–8396.CrossRefGoogle Scholar
  88. Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Science USA, 99, 8742–8747.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dipartimento di Morfologia ed EmbriologiaUniversità degli Studi di FerraraFerraraItaly

Personalised recommendations