Skip to main content

Minimal Mind

  • Chapter
  • First Online:
Origins of Mind

Part of the book series: Biosemiotics ((BSEM,volume 8))

Abstract

In contrast to the human standard for mind established by Alan Turing, I search for a “minimal mind,” which is present in animals and even lower-level organisms. Mind is a tool for the classification and modeling of objects. Its origin marks an evolutionary transition from protosemiotic agents, whose signs directly control actions, to eusemiotic agents, whose signs correspond to ideal objects. The hallmark of mind is a holistic perception of objects, which is not reducible to individual features or signals. Mind can support true intentionality of agents because goals become represented by classes or states of objects. Basic components of mind appear in the evolution of protosemiotic agents; thus, the emergence of mind was inevitable. The classification capacity of mind may have originated from the ability of organisms to classify states of their own body. Within primary modeling systems, ideal objects are not connected with each other and often tailored for specific functions, whereas in the secondary modeling system, ideal objects are independent from functions and become interconnected via arbitrarily established links. Testing of models can be described by commuting diagrams that integrate measurements, model predictions, object tracking, and actions. Language, which is the tertiary modeling system, supports efficient communication of models between individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armus, H. L., Montgomery, A. R., & Gurney, R. L. (2006). Discrimination learning and extinction in paramecia (P. caudatum). Psychological Reports, 98(3), 705–711.

    Article  PubMed  Google Scholar 

  • Barbieri, M. (2003). The organic codes: An introduction to semantic biology. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: A new understanding of life. Die Naturwissenschaften, 95(7), 577–599.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, M. (2011). Origin and evolution of the brain. Biosemiotics, 4(3), 369–399.

    Article  Google Scholar 

  • Baslow, M. H. (2011). Biosemiosis and the cellular basis of mind. How the oxidation of glucose by individual neurons in brain results in meaningful communications and in the emergence of “mind”. Biosemiotics, 4(1), 39–53.

    Article  Google Scholar 

  • Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions in organisms and devices. In G. V. de Vijver, S. Salthe, & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht/Holland: Kluwer.

    Google Scholar 

  • Cariani, P. (2011). The semiotics of cybernetic percept-action systems. International Journal of Signs and Semiotic Systems, 1(1), 1–17.

    Article  Google Scholar 

  • Deacon, T. W. (2011). Incomplete nature: How mind emerged from matter. New York: W. W. Norton and Company.

    Google Scholar 

  • Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.

    Google Scholar 

  • Eco, U. (1976). A theory of semiotics. Bloomington: Indiana University Press.

    Google Scholar 

  • Edelman, G. M. (1988). Topobiology: An introduction to molecular embryology. New York: Basic Books.

    Google Scholar 

  • Emmeche, C., & Hoffmeyer, J. (1991). From language to nature – The semiotic metaphor in biology. Semiotica, 84(1/2), 1–42.

    Article  Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural organisms. Journal of Biosciences, 34(4), 633–646.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, D. R. (1992). Animal minds. Chicago: University of Chicago Press.

    Google Scholar 

  • Hoffmeyer, J. (1997). Biosemiotics: Towards a new synthesis in biology. European Journal for Semiotic Studies, 9(2), 355–376.

    Google Scholar 

  • Hoffmeyer, J. (2010). Semiotics of nature. In P. Cobley (Ed.), The Routledge companion to semiotics (pp. 29–42). London/New York: Routledge.

    Google Scholar 

  • Jeanteur, P. (2005). Epigenetics and chromatin. Berlin: Springer.

    Book  Google Scholar 

  • Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.

    Google Scholar 

  • Krampen, M. (1981). Phytosemiotics. Semiotica, 36(3/4), 187–209.

    Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: The semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6(2), 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Lovelock, J. E. (1979). Gaia. A new look at life on earth. Oxford: Oxford University Press.

    Google Scholar 

  • Markoš, A., & Švorcová, J. (2009). Recorded versus organic memory: Interaction of two worlds as demonstrated by the chromatin dynamics. Biosemiotics, 2(2), 131–149.

    Article  Google Scholar 

  • Millau, J. F., & Gaudreau, L. (2011). CTCF, cohesin, and histone variants: Connecting the genome. Biochemistry and Cell Biology, 89(5), 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857–869.

    Article  PubMed  CAS  Google Scholar 

  • Nillson, N. J. (1998). Artificial intelligence: A new synthesis. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Peirce, C. S. (1998). The essential Peirce: Selected philosophical writings (Vol. 2). Indiana: Indiana University Press.

    Google Scholar 

  • Perlovsky, L., Deming, R., & Ilin, R. (2011). Emotional cognitive neural algorithms with engineering applications. Dynamic logic: From vague to crisp (Vol. 371). Warsaw: Polish Academy of Sciences.

    Book  Google Scholar 

  • Popper, K. (1999). All life is problem solving. London: Routledge.

    Google Scholar 

  • Premack, D. G., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? The Behavioral and Brain Sciences, 1, 515–526.

    Article  Google Scholar 

  • Prodi, G. (1988). Material bases of signification. Semiotica, 69(3/4), 191–241.

    Google Scholar 

  • Putnam, H. (1975). Mind, language and reality (Vol. 2). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rashevsky, N. (1938). Mathematical biophysics. Chicago: University of Chicago Press.

    Google Scholar 

  • Rosen, R. (1970). Dynamical system theory in biology. New York: Wiley-Interscience.

    Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

    Google Scholar 

  • Sebeok, T. A. (1972). Perspectives in zoosemiotics. The Hague: Mouton.

    Google Scholar 

  • Sebeok, T. (1987). Language: How primary a modeling system? In J. Deely (Ed.), Semiotics 1987 (pp. 15–27). Lanham: University Press of America.

    Google Scholar 

  • Sebeok, T. A., & Danesi, M. (2000). The forms of meaning. Modeling systems theory and semiotic analysis. New York: Mouton de Gruyter.

    Book  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.

    Google Scholar 

  • Sharov, A. A. (2006). Genome increase as a clock for the origin and evolution of life. Biology Direct, 1, 17.

    Article  PubMed  Google Scholar 

  • Sharov, A. A. (2009a). Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. International Journal of Molecular Sciences, 10(4), 1838–1852.

    Article  PubMed  CAS  Google Scholar 

  • Sharov, A. A. (2009b). Genetic gradualism and the extraterrestrial origin of life. Journal of Cosmology, 5, 833–842.

    Google Scholar 

  • Sharov, A. A. (2009c). Role of utility and inference in the evolution of functional information. Biosemiotics, 2(1), 101–115.

    Article  PubMed  Google Scholar 

  • Sharov, A. (2010). Functional information: Towards synthesis of biosemiotics and cybernetics. Entropy, 12(5), 1050–1070.

    Article  PubMed  Google Scholar 

  • Sharov, A. A. (2012). The origin of mind. In T. Maran, K. Lindström, R. Magnus, & M. Tønnensen (Eds.), Semiotics in the wild (pp. 63–69). Tartu: University of Tartu.

    Google Scholar 

  • Swan, L. S., & Goldberg, L. J. (2010). How is meaning grounded in the organism? Biosemiotics, 3(2), 131–146.

    Article  Google Scholar 

  • Swan, L. S., & Howard, J. (2012). Digital immortality: Self or 01001001? International Journal of Machine Consciousness, 4(1), 245–256.

    Google Scholar 

  • Turchin, V. F. (1977). The phenomenon of science. New York: Columbia University Press.

    Google Scholar 

  • Turing, A. (1952). Can automatic calculating machines be said to think? In B. J. Copeland (Ed.), The essential Turing: The ideas that gave birth to the computer age (pp. 487–506). Oxford: Oxford University Press.

    Google Scholar 

  • Uexküll, J. (1982). The theory of meaning. Semiotica, 42(1), 25–82.

    Google Scholar 

  • Visel, A., Blow, M. J., Li, Z., Zhang, T., Akiyama, J. A., Holt, A., et al. (2009). ChIP-seq ­accurately predicts tissue-specific activity of enhancers. Nature, 457(7231), 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Wood, D. C. (1992). Learning and adaptive plasticity in unicellular organisms. In L. R. Squire (Ed.), Encyclopedia of learning and memory (pp. 623–624). New York: Macmillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Sharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharov, A.A. (2013). Minimal Mind. In: Swan, L. (eds) Origins of Mind. Biosemiotics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5419-5_18

Download citation

Publish with us

Policies and ethics