Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

There has been much progress in our understanding of transthyretin (TTR)-related amyloidosis including familial amyloidotic polyneuropathy (FAP), senile systemic amyloidosis and its related disorders from many clinical and experimental aspects. FAP is an inherited severe systemic amyloidosis caused by mutated TTR, and characterized by amyloid deposition mainly in the peripheral nervous system and the heart. Liver transplantation is the only available treatment for the disease. FAP is now recognized not to be a rare disease, and to have many variations based on genetical and biochemical variations of TTR. This chapter covers the recent advances in the clinical and pathological aspects of, and therapeutic approaches to FAP, and the trend as to the molecular pathogenesis of TTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams D, Samuel D, Goulon-Goeau C, Nakazato M, Costa PM, Feray C, Planté V, Ducot B, Ichai P, Lacroix C, Metral S, Bismuth H, Said G (2000) The course and prognostic factors of familial amyloid polyneuropathy after liver transplantation. Brain 123:1495–1504.

    Article  PubMed  Google Scholar 

  • Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW (2004) Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 47:355–374

    Article  PubMed  CAS  Google Scholar 

  • Afolabi I, Hamidi Asl K, Nakamura M, Jacobs P, Hendrie H, Benson MD (2000) Transthyretin isoleucine-122 mutation in African and American blacks. Amyloid 7:121–125

    Article  PubMed  CAS  Google Scholar 

  • Alhamadsheh MM, Connelly S, Cho A, Reixach N, Evan T, Powers ET, Pan DW, Wilson IA, Kelly JF, Graef IA (2011) Potent kinetic stabilizers that prevent transthyretin-mediated cardiomyocyte proteotoxicity. Sci Transl Med 3:97ra81

    Article  CAS  Google Scholar 

  • Almeida MR, Alves IL, Terazaki H, Ando Y, Saraiva MJ (2000) Comparative studies of two transthyretin variants with protective effects on familial amyloidotic polyneuropathy: TTR R104H and TTR T119M. Biochem Biophys Res Commun 270:1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Almeida MR, Macedo B, Cardoso I, Alves I, Valencia G, Arsequell G, Planas A, Saraiva MJ (2004) Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem J 381:351–356

    Article  PubMed  CAS  Google Scholar 

  • Alves IL, Altland K, Almeida MR, Winter P, Saraiva MJ (1997) Screening and biochemical characterization of transthyretin variants in the Portuguese population. Hum Mutat 9:226–233

    Article  PubMed  CAS  Google Scholar 

  • Ancsin JB (2003) Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 10:67–79

    Article  PubMed  CAS  Google Scholar 

  • Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294:309–314

    Article  PubMed  CAS  Google Scholar 

  • Ando Y (2005) Liver transplantation and new therapeutic approaches for familial amyloidotic polyneuropathy (FAP). Med Mol Morphol 38:142–154

    Article  PubMed  Google Scholar 

  • Ando Y (2010) FAP is a candidate disease in patients with undetermined polyneuropathy. Intern Med 49:1841–1842

    Article  PubMed  Google Scholar 

  • Ando Y, Ueda M (2008) Novel methods for detecting amyloidogenic proteins in transthyretin related amyloidosis. Front Biosci 13:5548–5558

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Yi S, Nakagawa T, Ikegawa S, Hirota M, Miyazaki A, Araki S (1991) Disturbed metabolism of glucose and related hormones in familial amyloidotic polyneuropathy: hypersensitivities of the autonomic nervous system and therapeutic prevention. J Auton Nerv Syst 35:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Tanaka Y, Nakazato M, Ericzon BG, Yamashita T, Tashima K, Sakashita N, Suga M, Uchino M, Ando M (1995) Change in variant transthyretin levels in patients with familial amyloidotic polyneuropathy type I following liver transplantation. Biochem Biophys Res Commun 211:354–358

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Yamashita T, Nakamura M, Tanaka Y, Hashimoto M, Tashima K, Suhr O, Uemura Y, Obayashi K, Terazaki H, Suga M, Uchino M, Ando M (1997) Down regulation of a harmful variant protein by replacement of its normal protein. Biochim Biophys Acta 1362:39–46

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Terazaki H, Nakamura M, Ando E, Haraoka K, Yamashita T, Ueda M, Okabe H, Sasaki Y, Tanihara H, Uchino M, Inomata Y (2004) A different amyloid formation mechanism: de novo oculoleptomeningeal amyloid deposits after liver transplantation. Transplantation 77:345–349

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Nakamura M, Araki S (2005) Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol 62:1057–1062

    Article  PubMed  Google Scholar 

  • Andrade C (1952) A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427

    Article  PubMed  CAS  Google Scholar 

  • Araki S, Ando Y (2010) Transthyretin-related familial amyloidotic polyneuropathy. Progress in Kumamoto, Japan (1967–2010). Proc Jpn Acad Ser B 86:694–706

    Article  CAS  Google Scholar 

  • Araki S, Mawatari S, Ohta M, Nakajima A, Kuroiwa Y (1968) Polyneuritic amyloidosis in a Japanese family. Arch Neurol 18:593–602

    Article  PubMed  CAS  Google Scholar 

  • Armen RS, DeMarco ML, Alonso DO, Daggett V (2004) Pauling and Corey’s alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci USA 101:11622–11627

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Bairagya HR, Mukhopadhyay BP, Nandi TK, Bera AK (2010) Structural insight to mutated Y116S transthyretin by molecular dynamics simulation. Indian J Biochem Biophys 47:197–202

    PubMed  CAS  Google Scholar 

  • Barouch FC, Benson MD, Mukai S (2004) Isolated vitreoretinal amyloidosis in the absence of transthyretin mutations. Arch Ophthalmol 122:123–125

    Article  PubMed  Google Scholar 

  • Baures PW, Peterson SA, Kelly JW (1998) Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem 6:1389–1401

    Article  PubMed  CAS  Google Scholar 

  • Baures PW, Oza VB, Peterson SA, Kelly JW (1999) Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the non-steroidal anti-inflammatory drug, flufenamic acid. Bioorg Med Chem 7:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Benson MD, Cohen AS (1977) Generalized amyloid in a family of Swedish origin. A study of 426 family members in seven generations of a new kinship with neuropathy, nephropathy, and central nervous system involvement. Ann Intern Med 86:419–424

    PubMed  CAS  Google Scholar 

  • Benson MD, Wallace MR, Tejada E, Baumann H, Page B (1987) Hereditary amyloidosis: description of a new american kindred with late onset cardiomyopathy. Arthritis Rheum 30:195–200

    Article  PubMed  CAS  Google Scholar 

  • Benson MD, Kluve-Beckerman B, Liepniesks JJ, Murrell JR, Hanes D, Uemichi T (1996) Metabolism of amyloid proteins. Ciba Found Symp 199:104–113

    PubMed  CAS  Google Scholar 

  • Benson MD, Kluve-Beckerman B, Zeldenrust SR, Siesky AM, Bodenmiller DM, Showalter AD, Sloop KW (2006) Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve 33:609–618

    Article  PubMed  CAS  Google Scholar 

  • Benson MD, Kincaid JC (2007) The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 36:411–423

    Google Scholar 

  • Benson MD, Smith RA, Hung G, Kluve-Beckerman B, Showalter AD, Sloop KW, Monia BP (2010) Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid 17:43–49

    Article  PubMed  CAS  Google Scholar 

  • Berg I, Thor S, Hammarström P (2009) Modeling familial amyloidotic polyneuropathy (transthyretin V30M) in Drosophila melanogaster. Neurodegener Dis 6:127–138

    Article  PubMed  CAS  Google Scholar 

  • Biolo A, Ramamurthy S, Connors LH, O’Hara CJ, Meier-Ewert HK, Soo Hoo PT, Sawyer DB, Seldin DS, Sam F (2008) Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: relationship to structural, functional myocardial changes and to light chain amyloid deposition. Circ Heart Fail 1:249–257

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt PL, Couto CA, Leitão MC, Siqueira SA, Farias AQ, Massarolo PCB, Mies S (2002) No evidence of de novo amyloidosis in recipients of domino liver transplantation: 12 to 40 (mean 24) month follow-up. Amyloid 9:194–196

    Article  PubMed  Google Scholar 

  • Blake CCF, Geisow MJ, Swan ID, Rérat C, Rérat B (1974) Structure of human plasma prealbumin at 2–5 Å resolution: a preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J Mol Biol 88:1–12

    Article  PubMed  CAS  Google Scholar 

  • Blake CC, Oatley SJ (1977) Protein-DNA and protein-hormone interactions in prealbumin: a model of the thyroid hormone nuclear receptor? Nature 268:115–120

    Article  PubMed  CAS  Google Scholar 

  • Blake C, Serpell L (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4:989–998

    Article  PubMed  CAS  Google Scholar 

  • Blake CCF, Geisow MJ, Oatley SJ, Rérat B, Rérat C (1978) Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinementat 1.8 Å. J Mol Bio 121:339–356

    Article  CAS  Google Scholar 

  • Blevins G, Macaulay R, Harder S, Fladeland D, Yamashita T, Yazaki M, Hamidi Asl K, Benson MD, Donat JR (2003) Oculoleptomeningeal amyloidosis in a large kindred with a new transthyretin variant Tyr69His. Neurology 60:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Bourgault S, Solomon JP, Reixach N, Kelly JW (2011) Sulfated glycosaminoglycans accelerate transthyretin amyloidogenesis by quaternary structural conversion. Biochemistry 50:1001–1015

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JN (2009) Animal models of human amyloidoses: are transgenic mice worth the time and trouble? FEBS Lett 583:2663–2673

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T (2008) Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci USA 105:2681–2686

    Article  PubMed  CAS  Google Scholar 

  • Cardoso I, Goldsbury CS, Müller SA, Olivieri V, Wirtz S, Damas AM, Aebi U, Saraiva MJ (2002) Transthyretin fibrillogenesis entails the assembly of monomers, a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J Mol Biol 317:683–685

    Article  PubMed  CAS  Google Scholar 

  • Cardoso I, Martins D, Tania Ribeiro T, Merlini G, Saraiva MJ (2010) Synergy of combined doxycycline/TUDCA treatment in lowering transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med 8:74–84

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro T, Martone RL, Dwork AJ, Schon EA, Herbert J (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthalmol Vis Sci 31:497–501

    PubMed  CAS  Google Scholar 

  • Choi S, Reixach N, Connelly S, Johnson SM, Wilson IA, Kelly JW (2010) A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. J Am Chem Soc 132:1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Chung CM, Connors LH, Benson MD, Walsh MT (2001) Biophysical analysis of normal transthyretin: implications for fibril formation in senile systemic amyloidosis. Amyloid 8:75–83

    Article  PubMed  CAS  Google Scholar 

  • Coelho T, Carvalho M, Saraiva MJ, Alvas I, Almedia MR, Costa PP (1993) Familial amyloidotic polyneuropathy and other transthyretin related disorders. Proceedings of the Second International Symposium, Skelleftea, Sweden, 1992. J Rheumatol 20:179

    Google Scholar 

  • Coelho T, Sousa A, Lourenço E, Ramalheira J (1994) A study of 159 Portuguese patients with familial amyloidotic polyneuropathy (FAP) whose parents were both unaffected. Med Genet 31:293–299

    Article  CAS  Google Scholar 

  • Coimbra A, Andrade C (1971) Familial amyloid polyneuropathy: an electron microscope study of the peripheral nerve in five cases. II. Nerve fibre changes. Brain 94:207–212

    Article  PubMed  CAS  Google Scholar 

  • Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660

    Article  PubMed  CAS  Google Scholar 

  • Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA (2010) Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol 20:54–62

    Article  PubMed  CAS  Google Scholar 

  • Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants. Amyloid 10:160–184

    Article  PubMed  CAS  Google Scholar 

  • Cornwell GG, Murdoch WL, Kyle RA, Westermark P, Pitkänen P (1983) Frequency and distribution of senile cardiovascular amyloid: a clinicopathologic correlation. Am J Med 75:618–623

    Article  PubMed  Google Scholar 

  • Costa PP, Figueira AS, Bravo FR (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–4503

    Article  PubMed  CAS  Google Scholar 

  • da Costa G, Gomes RA, Guerreiro A, Mateus É, Monteiro E, Barroso E, Coelho AV, Freire AP, Cordeiro C (2011) Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen’s chaperone activity. PLoS One 6:e24850

    Article  PubMed  CAS  Google Scholar 

  • Dardiotis E, Koutsou P, Zamba-Papanicolaou E, Vonta I, Hadjivassiliou M, Hadjigeorgiou G, Cariolou M, Christodoulou K, Kyriakides T (2009) Complement C1Q polymorphisms modulate onset in familial amyloidotic polyneuropathy TTR Val30Met. J Neurol Sci 284:158–162

    Article  PubMed  CAS  Google Scholar 

  • Di Bella G, Minutoli F, Mazzeo A, Vita G, Oreto G, Carerj S, Anfuso C, Russo M, Gaeta M (2010) MRI of cardiac involvement in transthyretin familial amyloid polyneuropathy. Am J Roentgenol 195:394–399

    Article  Google Scholar 

  • Do Amaral B, Coelho T, Sousa A, Guimarães A (2009) Usefulness of labial salivary gland biopsy in familial amyloid polyneuropathy Portuguese type. Amyloid 16:232–238

    Article  PubMed  Google Scholar 

  • Du J, Murphy RM (2010) Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers. Biochemistry 49:8276–8289

    Article  PubMed  CAS  Google Scholar 

  • Dubový P, Klusáková I, Svíženská I (2002) A quantitative immunohistochemical study of the endoneurium in the rat dorsal and ventral spinal roots. Histochem Cell Biol 117:473–480

    Article  PubMed  CAS  Google Scholar 

  • Dwulet FE, Benson MD (1984) Primary structure of an amyloid prealbumin and its plasma precursor in a heredofamilial polyneuropathy of Swedish origin. Proc Natl Acad Sci USA 81:694–698

    Article  PubMed  CAS  Google Scholar 

  • Dwulet FE, Benson MD (1986) Characterization of prealbumin variant associated with familial amyloidotic polyneuropathy type II (Indiana/Swiss). J Clin Invest 78:880–886

    Article  PubMed  CAS  Google Scholar 

  • Dyck PJ, Lambert EH (1969) Compound action potential, quantitative histologic and teased-fiber, and electron microscopic studies of sural nerve biopsies. Arch Neurol 20:490–507

    Article  PubMed  CAS  Google Scholar 

  • El-Salhy M, Suhr O, Stenling R, Wilander E, Grimelius L (1994) Impact of familial amyloid associated polyneuropathy on duodenal endcrine cells. Gut 35:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Eneqvist T, Andersson K, Olofsson A, Lundgren E, Sauer-Eriksson AE (2000) The beta-slip: a novel concept in transthyretin amyloidosis. Mol Cell 6:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379

    Article  PubMed  CAS  Google Scholar 

  • Falls HF, Jackson J, Carey JH, Rukavina JG, Block WD (1955) Ocular manifestations of hereditary primary systemic amyloidosis. Arch Ophthalmol 54:660–664

    Article  CAS  Google Scholar 

  • Ferrao-Gonzales AD, Palmieri L, Valory M, Silva JL, Lashuel H, Kelly JW, Foguel D (2003) Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease. J Mol Biol 328:963–974

    Article  PubMed  CAS  Google Scholar 

  • Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G, Maria Saraiva J, Almeida MR (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583:3569–3576

    Article  PubMed  CAS  Google Scholar 

  • Fiori MG, Salvi F, Plasmati R, Tessari F, Bianchi R, Tassinari CA (1994) Amyloid deposits inside myocardial fibers in transthyretin-Met30 familial amyloidotic polyneuropathy. A histological and biochemical study. Cardiology 85:145–153

    Article  PubMed  CAS  Google Scholar 

  • Fleming CE, Saraiva MJ, Sousa MM (2007) Transthyretin enhances nerve regeneration. J Neurochem 103:831–839

    Article  PubMed  CAS  Google Scholar 

  • Foguel D, Suarez MC, Ferrão-Gonzales AD, Porto TC, Palmieri L, Einsiedler CM, Andrade LR, Lashuel HA, Lansbury PT, Kelly JW, Silva JL (2003) Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 100:9831–9836

    Article  PubMed  CAS  Google Scholar 

  • Foss TR, Kelker MS, Wiseman RL, Wilson IA, Kelly JW (2005) Kinetic stabilization of the native state by protein engineering: implications for inhibition of transthyretin amyloidogenesis. J Mol Biol 347:841–854

    Article  PubMed  CAS  Google Scholar 

  • Fuchs U, Zittermann A, Suhr O, Holmgren G, Tenderich G, Minami K, Koerfer R (2005) Heart transplantation in a 68-year-old patient with senile systemic amyloidosis. Am J Transplant 5:1159–1162

    Article  PubMed  Google Scholar 

  • Gallo G, Wisniewski T, Choi-Miura N-H, Ghiso J, Frangione B (1994) Potential role of apolipoprotein-E in fibrillogenesis. Am J Pathol 145:526–530

    PubMed  CAS  Google Scholar 

  • Gambetti P, Russo C (1998) Human brain amyloidosis. Nephrol Dial Transplant 13:33–40

    Article  PubMed  Google Scholar 

  • Gasperini RJ, Hou X, Parkington H, Coleman H, Klaver DW, Vincent AJ, Foa LC, Small DH,(2011) TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons. Mol Neurodegener 6:19

    Article  PubMed  CAS  Google Scholar 

  • Goebel HH, Seddigh S, Hopf HC, Uemichi T, Benson MD, McKusick VA (1997) A European family with histidine 58 transthyretin mutation in familial amyloid polyneuropathy. Neuromuscul Disord 7:229–230

    Article  PubMed  CAS  Google Scholar 

  • Goren H, Steinberg MC, Farboody GH (1980) Familial oculoleptomeningeal amyloidosis. Brain 103:473–495

    Article  PubMed  CAS  Google Scholar 

  • Greene MJ, Sam F, Soo Hoo PT, Patel RS, Seldin DC, Connors LH (2011) Evidence for a functional role of the molecular chaperone clusterin in amyloidotic cardiomyopathy. Am J Pathol 178:61–68

    Article  PubMed  CAS  Google Scholar 

  • Groenning M, Campos RI, Fagerberg C, Rasmussen AA, Eriksen UH, Powers ET, Hammarström P (2011) Thermodynamic stability and denaturation kinetics of a benign natural transthyretin mutant identified in a Danish kindred. Amyloid 18:35–46

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson A, Engström U, Westermark P (1991) Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem Biophys Res Commun 175:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara K, Ochi H, Suzuki S, Shimizu Y, Tokuda T, Murai H, Shigeto H, Ohyagi Y, Iwata M, Iwaki T, Kira J (2009) Highly selective leptomeningeal amyloidosis with transthyretin variant Ala25Thr. Neurology 72:1358–1360

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Benson MD (2001) Transthyretin: a review from a structural perspective. Cell Mol Life Sci 58:1491–1521

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JA, Steinrauf LK, Braden BC, Liepnieks J, Benson MD, Holmgren G, Sandgren O, Steen L (1993) The X-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30®Met variant to 1.7-Å resolution. J Biol Chem 268:2416–2424

    PubMed  CAS  Google Scholar 

  • Hammarström P, Schneider F, Kelly JW (2001) Trans-suppression of misfolding in an amyloid disease. Science 293:2459–2462

    Article  PubMed  Google Scholar 

  • Hammarström P, Wiseman RL, Powers ET, Kelly JW (2003a) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299:713–716

    Article  CAS  Google Scholar 

  • Hammarström P, Sekijima Y, White JT, Wiseman RL, Lim A, Costello CE, Altland K, Garzuly F, Budka H, Kelly JW (2003b) D18G transthyretin is monomeric, aggregation prone, and not detectable in plasma and cerebrospinal fluid: a prescription for central nervous system amyloidosis? Biochemistry 42:6656–6663

    Article  CAS  Google Scholar 

  • Hanyu N, Ikeda S, Nakadai A, Yanagisawa, N, Powell HC (1989) Peripheral nerve pathological findings in familial amyloid polyneuropathy: a correlative study of proximal sciatic nerve and sural nerve lesions. Ann Neurol 25:340–350

    Article  PubMed  CAS  Google Scholar 

  • Hanyu N, Shimizu T, Yamauchi K, Okumura N, Hidaka H (2009) Characterization of cysteine and homocysteine bound to human serum transthyretin. Clin Chim Acta 403:70–75

    Article  PubMed  CAS  Google Scholar 

  • Harats N, Robert M, Worth RM, Benson MD (1989) Hereditary amyloidosis: evidence against early amyloid deposition. Arthritis Rheum 32:1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Hellman U, Alarcon F, Lundgren HE, Suhr OB, Bonaiti-Pellié C, Planté-Bordeneuve V (2008) Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population. Amyloid 15:181–186

    Article  PubMed  CAS  Google Scholar 

  • Herbert J, Wilcox JN, Pham KT, Fremeau RT Jr, Zeviani M, Dwork A, Soprano DR, Makover A, Goodman DS, Zimmerman EA, Roberts JL, Schon EA (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. Neurology 36:900–911

    Article  PubMed  CAS  Google Scholar 

  • Herlenius G, Wilczek HE, Larsson M, Ericzon B-G (2004) Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the familial amyloidotic polyneuropathy world transplant registry. Transplantation 77:64–71

    Article  PubMed  Google Scholar 

  • Hofer PA, Anderson R (1975) Postmortem findings in primary familial amyloidosis with polyneuropathy. Acta Pathol Microbiol Scand A 83:309–322

    PubMed  CAS  Google Scholar 

  • Holmgren G, Holmberg E, Lindström A, Lindström E, Nordenson I, Sandgren O, Steen L, Svensson B, Lundgren E, von Gabain A (1988) Diagnosis of familial amyloidotic polyneuropathy in Sweden by RFLP analysis. Clin Genet 33:176–180

    Article  PubMed  CAS  Google Scholar 

  • Holmgren G, Steen L, Ekstedt J, Groth C-G, Ericzon B-G, Eriksson S, Andersen O, Karlberg I, Nordén G, Nakazato M, Hawkins P, Richardson S, Pepys M (1991) Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet 40:242–246

    Article  PubMed  CAS  Google Scholar 

  • Holmgren G, Bergström S, Drugge U, Lundgren E, Nording-Sikström C, Sandgren O, Steen L (1992) Homozygosity for the transthyretin-Met30-gene in seven individuals with familial amyloidosis with polyneuropathy detected by restriction enzyme analysis of amplified genomic DNA sequences. Clin Genet 41:39–41

    Article  PubMed  CAS  Google Scholar 

  • Holmgren G, Steen L, Suhr O, Ericzon B-G, Groth C-G, Andersen O, Wallin BG, Seymour A, Richardson S, Hawkins PN, Pepys MB (1993) Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 342:1113–1116

    Article  Google Scholar 

  • Holmgren G, Costa PMP, Andersson C, Asplund K, Steen L, Beckman L, Nylander P-O, Teixeira A, Saraiva MJM, Costa PP (1994) Geographical distribution of TTR met30 carriers in northern Sweden: discrepancy between carrier frequency and prevalence rate. J Med Genet 31:351–354

    Article  PubMed  CAS  Google Scholar 

  • Hörnberg A, Eneqvist T, Olofsson A, Lundgren E, Sauer-Eriksson AE (2000) A comparative analysis of 23 structures of the amyloidogenic protein transthyretin. J Mol Biol 302:649–669

    Article  PubMed  CAS  Google Scholar 

  • Hörnsten R, Wiklund U, Olofsson B-O, Jensen SM, Suhr OB (2004) Liver transplantation does not prevent the development of life-threatening arrhythmia in familial amyloidotic polyneuropathy, Portuguese-type (ATTR Val30Met) patients. Transplantation 78:112–116

    Article  PubMed  Google Scholar 

  • Hou X, Richardson SJ, Aguilar MI, Small DH (2005) Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry 44:11618–11627

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar M-I, Small DH (2007) Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem 100:446–457

    Article  PubMed  CAS  Google Scholar 

  • Hund E, Linke RP, Willig F, Grau A (2001) Transthyretin-associated neuropathic amyloidosis. Pathogenesis and treatment. Neurology 56:431–435

    Article  PubMed  CAS  Google Scholar 

  • Hurshman Babbes AR, White JT, Powers ET, Kelly JW (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43:7365–7381

    Article  CAS  Google Scholar 

  • Hurshman Babbes AR, Powers ET, Kelly JW (2008) Quantification of the thermodynamically linked quaternary and tertiary structural stabilities of transthyretin and its disease-associated variants: the relationship between stability and amyloidosis. Biochemistry 47:6969–6984

    Article  PubMed  CAS  Google Scholar 

  • Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924

    Article  PubMed  CAS  Google Scholar 

  • Hyung S-J, Deroo S, Robinson CV (2010) Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem Biol 5:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Ihse E, Suhr OB, Hellman U, Westermark P (2011) Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis. J Mol Med (Berl.) 89:171–180

    Article  CAS  Google Scholar 

  • Ikeda S (2004) Cardiac amyloidosis: heterogenous pathogenic backgrounds. Intern Med 43:1107–1114

    Article  PubMed  Google Scholar 

  • Ikeda S, Hanyu N, Hongo M, Yoshioka J, Oguchi H, Yanagisawa N, Kobayashi T, Tsukagoshi H, Ito N, Yokota T (1987) Hereditary generalized amyloidosis with polyneuropathy, clinicopathological study of 65 Japanese patients. Brain 110:315–337

    Article  PubMed  Google Scholar 

  • Ikeda S, Nakazato M, Ando Y, Sobue G (2002) Familial transthyretin-type amyloid polyneuropathy in Japan: clinical and genetic heterogeneity. Neurology 58:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, Takei Y, Hashikura Y (2003) Liver transplantation as treatment for neurological disorders. Expert Rev Neurother 3:547–555

    Article  PubMed  CAS  Google Scholar 

  • Ingenbleek K, Young V (1994) Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr 14:495–533

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Kuroiwa M, Saraiva MJ, Guimarães A, Kisilevsky R (1998) Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol 124:1–12

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Ohta M, Li Z, Zhao G, Takaoka Y, Sakashita N, Miyakawa K, Takada K, Tei H, Suzuki M, Masuoka M, Sakaki Y, Takahashi K, Yamamura K (2008) Specific pathogen free conditions prevent transthyretin amyloidosis in mouse models. Transgenic Res 17:817–826

    Article  PubMed  CAS  Google Scholar 

  • Inouye H, Domingues FS, Damas AM, Saraiva MJ, Lundgren E, Sandgren O, Kirschner DA (1998) Analysis of x-ray diffraction patterns from amyloid of biopsied vitreous humor and kidney of transthyretin (TTR) Met30 familial amyloidotic polyneuropathy (FAP) patients: axially arrayed TTR monomers constitute the protofilament. Amyloid 5:163–174

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV, Cohen IR, Grassel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302:625–639

    PubMed  CAS  Google Scholar 

  • Izumoto S, Younger D, Hays AP, Martone RL, Smith RT, Herbert J (1992) Familial amyloidotic polyneuropathy presenting with carpal tunnel syndrome and a new transthyretin mutation, asparagine 70. Neurology 42:2094–2102

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson B, Collins VP, Grimelius L, Pettersson T, Sandstedt B, Carlström A (1989) Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets. J Histochem Cytochem 37:31–37

    Article  PubMed  CAS  Google Scholar 

  • Jacobson DR, McFarlin DE, Kane I, Buxbaum JN (1992) Transthyretin Pro55, a variant associated with early-onset, aggressive, diffuse amyloidosis with cardiac and neurologic involvement. Hum Genet 89:353–356

    Article  PubMed  CAS  Google Scholar 

  • Jacobson DR, Pastore RD, Yaghoubian R, Kane I, Gallo G, Buck FS, Buxbaum JN,(1997) Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med 336:466–473

    Article  PubMed  CAS  Google Scholar 

  • Jacobson D, Tagoe C, Schwartzbard A, Shah A, Koziol J, Buxbaum J (2011) Relation of clinical, echocardiographic and electrocardiographic features of cardiac amyloidosis to the presence of the transthyretin V122I allele in older African-American men. Am J Cardiol 108:440–444

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Smith CS, Petrassi HM, Hammarström P, White JT, Sacchettini JC, Kelly JW (2001) An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40:11442–11452

    Article  PubMed  CAS  Google Scholar 

  • Jinno Y, Matsumoto T, Kamel T, Kondoh T, Maeda S, Araki S, Shimada K, Niikawa N (1986) Localization of the human prealbumin gene to 18p11.1-q12.3 by gene dose effect study of southern blot hybridization. Jpn J Hum Genet 31:243–248

    Article  CAS  Google Scholar 

  • Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (2005) Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res 38:911–921

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2008a) Biochemical and structural evaluation of highly selective 2-arylbenzoxazole-based transthyretin amyloidogenesis inhibitors. J Med Chem 51:260–270

    Article  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2008b) Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem 51:6348–6358

    Article  CAS  Google Scholar 

  • Johnson SM, Connelly S, Wilson IA, Kelly JW (2009) Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem 52:1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Jono H, Anno T, Motoyama K, Misumi Y, Tasaki M, Toshinori Oshima T, Mori Y, Mizuguchi M, Ueda M, Shono M, Obayashi K, Arima H, Ando Y (2011) Cyclodextrin, a novel therapeutic tool for suppressing amyloidogenic transthyretin misfolding in transthyretin-related amyloidosis. Biochem J 437:35–42

    Article  PubMed  CAS  Google Scholar 

  • Kanda Y, Goodman DS, Canfield RE, Morgans FJ (1974) The amino acid sequence of human plasma prealbumin. Biol Chem 249:6796–6806

    CAS  Google Scholar 

  • Kassem NA, Deane R, Segal MB, Preston JE (2006) Role of transthyretin in thyroxine transfer from cerebrospinal fluid to brain and choroid plexus. Am J Physiol Regul Integr Comp Physiol 291:R1310-R1315

    Article  PubMed  CAS  Google Scholar 

  • Kawaji T, Ando Y, Ando E, Sandgren O, Suhr OB, Tanihara H (2010a) Transthyretin-related vitreous amyloidosis in different endemic areas. Amyloid 17:105–108

    Article  CAS  Google Scholar 

  • Kawaji T, Ando Y, Hara R, Tanihara H (2010b) Novel therapy for transthyretin—related ocular amyloidosis. A pilot study of retinal laser photocoagulation. Ophthalmology 117:552–555

    Article  Google Scholar 

  • Keetch CA, Bromely EH, McCammon MG, Wang N, Christodoulou J, Robinson CV (2005) L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J Biol Chem 280:41667–41674

    Article  PubMed  CAS  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  • Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettin JC (2000) Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol 7:312–321

    Article  PubMed  CAS  Google Scholar 

  • Kohno K, Palha JA, Miyakawa K, Saraiva MJM, Ito S, Mabuchi T, Blaner WS, Iijima H, Tsukahara S, Episkopou V, Gottesman ME, Shimada K, Takahashi K, Yamamura K, Maeda S (1997) Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am J Pathol 150:1497–1508

    PubMed  CAS  Google Scholar 

  • Koike H, Misu K, Ikeda S, Ando Y, Nakazato M, Ando E, Yamamoto M, Hattori N, Sobue G, For the Study Group for Hereditary Neuropathy in Japan (2002) Type I (Transthyretin Met30) familial amyloid polyneuropathy in Japan. Early- vs late-onset form. Arch Neurol 59:1771–1776

    Article  PubMed  Google Scholar 

  • Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, Hattori N, Mukai E, Ando Y, Ikeda S, Sobue G (2004) Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 63:129–138

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, Tanaka F, Sobue G (2011) Diagnosis of sporadic transthyretin Val30Met familial amyloid polyneuropathy: a practical analysis. Amyloid 18:53–62

    Article  PubMed  CAS  Google Scholar 

  • Kugimiya T, Jono H, Saito S, Maruyama T, Kadowaki D, Misumi Y, Hoshii Y, Tasaki M, Su Y, Ueda M, Obayashi K, Shono M, Otagiri M, Ando Y (2011) Loss of functional albumin triggers acceleration of transthyretin amyloid fibril formation in familial amyloidotic polyneuropathy. Lab Invest 91:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, Colon W, Kelly JW (1996) The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35:6470–6482

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, McCulloch J, Lashuel HA, Kelly JW (1997) Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers. Biochemistry 36:10230–10239

    Article  PubMed  CAS  Google Scholar 

  • Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  PubMed  CAS  Google Scholar 

  • Larsen PR (1972) Salicylate-induced increases in free triiodothyronine in human serum. Evidence of inhibition of triiodothyronine binding to thyroxine-binding prealbumin. J Clin Invest 51:1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Lashuel HA, Lai Z, Kelly JW (1998) Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37:17851–17864

    Article  PubMed  CAS  Google Scholar 

  • Lashuel HA, Wurth C, Woo L, Kelly JW (1999) The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Biochemistry 38:13560–13573

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Lee DH, Son H, Kim YS, Park JY, Roh GS, Kim HJ, Kang SS, Cho GJ, Choi WS (2009) Clusterin regulates transthyretin amyloidosis. Biochem Biophys Res Commun 388:256–260

    Article  PubMed  CAS  Google Scholar 

  • Lei M, Yanga M, Huo S (2004) Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. J Struct Biol 148:153–168

    Article  PubMed  CAS  Google Scholar 

  • Li X, Masliah E, Reixach N, Buxbaum JN (2011) Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J Neurosci 31:12483–12490

    Article  PubMed  CAS  Google Scholar 

  • Liepnieks JJ, Zhang LQ, Benson MD (2010) Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology 75:324–327

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Murphy RM (2006) Kinetics of inhibition of beta-amyloid aggregation by transthyretin. Biochemistry 45:15702–15709

    Article  PubMed  CAS  Google Scholar 

  • Lyon AW, Narindrasorasak S, Young ID, Anastassiades T, Couchman JR, McCarthy KJ, Kisilevsky R (1991) Co-deposition of basement membrane components during the induction of murine splenic AA amyloid. Lab Invest 64:785–90

    PubMed  CAS  Google Scholar 

  • Macedo B, Batista AR, Ferreira N, Almeida MR, Saraiva MJ (2008) Anti-apoptotic reatment reduces transthyretin deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Biochim Biophys Acta 1782:517–22

    Article  PubMed  CAS  Google Scholar 

  • Macedo B, Magalhães J, Batista AR, Maria João Saraiva MJ (2010) Carvedilol treatment reduces transthyretin deposition in a familial amyloidotic polyneuropathy mouse model. Pharmacol Res 62:514–522

    Article  PubMed  CAS  Google Scholar 

  • Magalhães J, Santos SD, Saraiva MJ (2010) αB-crystallin (HspB5) in familial amyloidotic polyneuropathy. Int J Exp Pathol 91:515–521

    Article  PubMed  CAS  Google Scholar 

  • Makover A, Moriwaki H, Ramakrishnan R, Saraiva MJM, Blaner WS, Goodman DS (1988) Plasma transthyretin. Tissue sites of degradation and turnover in the rat. J Biol Chem 263:8598–8603

    PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Mathew V, Olson LJ, Gertz MA, Hayes DL (1997) Symptomatic conduction system disease in cardiac amyloidosis. Am J Cardiol 80:1491–1492

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Mizuguchi M, Igarashi K, Shinohara Y, Takeuchi M, Matsuura A, Saitoh T, Mori Y, Shinoda H, Kawano K (2005) Dimeric transthyretin variant assembles into spherical neurotoxins. Biochemistry 44:3280–3288

    Article  PubMed  CAS  Google Scholar 

  • McCutchen SL, Colon W, Kelly LW (1993) Transthyretin mutation Leu55-Pro significantly alters tetramer stability and increases amyloidgenicity. Biochemistry 32:12119–12127

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Sekijima Y, Kelly JW (2004) Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest 84:545–552

    Article  PubMed  CAS  Google Scholar 

  • Miroy GJ, Lai Z, Lashuel HA, Peterson SA, Strang C, Kelly JW (1996) Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci USA 93:15051–15056

    Article  PubMed  CAS  Google Scholar 

  • Misu K, Hattori N, Nagamatsu M, Ikeda S, Ando Y, Nakazato M, Takei Y, Hanyu N, Usui Y, Tanaka F, Harada T, Inukai A, Hashizume Y, Sobue G (1999) Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan. Clinicopathological and genetic features. Brain 122:1951–1962

    Article  PubMed  Google Scholar 

  • Misumi Y, Ando Y, Ueda M, Obayashi K, Jono H, Su Y, Yamashita T, Uchino M (2009) Chain reaction of amyloid fibril formation with induction of basement membrane in familial amyloidotic polyneuropathy. J Pathol 219:481–490

    Article  PubMed  CAS  Google Scholar 

  • Misumi Y, Ueda M, Obayashi K, Jono H, Su Y, Yamashita T, Ohshima T, Ando Y, Uchino M (2012) Relationship between amyloid deposition and intracellular structural changes in familial amyloidotic polyneuropathy. Hum Pathol 43:96–104

    Article  PubMed  CAS  Google Scholar 

  • Mita S, Maeda S, Shimada K, Araki S (1984) Cloning and sequence analysis of cDNA for human prealbumin. Biochem Biophys Res Commun 124:558–564

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhashi S, Yazaki M, Tokuda T, Yamamoto K, Ikeda S (2004) MRI analysis on a patient with the V30M mutation is characteristic of leptomeningeal amyloid. Amyloid 11:265–267

    Article  PubMed  CAS  Google Scholar 

  • Miyata M, Sato T, Mizuguchi M, Nakamura T, Ikemizu S, Nabeshima Y, Susuki S, Suwa Y, Morioka H, Ando Y, Suico MA, Shuto T, Koga T, Yamagata Y, Kai H (2010) Role of the glutamic acid 54 residue in transthyretin stability and thyroxine binding. Biochemistry 49:114–123

    Article  PubMed  CAS  Google Scholar 

  • Monteiro FA, Sousa MM, Cardoso I, Barbas do Amaral J, Guimarães A, Saraiva MJ (2006) Activation of ERK1/2 MAP kinases in familial amyloidotic polyneuropathy. J Neurochem 97:151–161

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Yi S, Maeda S, Tashiro F, Yamamura K, Takahashi K, Shimada K, Araki S (1992) Effect of serum amyloid P component level on transthyretin-derived amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Am J Pathol 141:451–456

    PubMed  CAS  Google Scholar 

  • Murakami T, Ohsawa Y, Sunada Y (2008) The transthyretin gene is expressed in human and rodent dorsal root ganglia. Neurosci Lett 436:335–339

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Ohsawa Y, Zhenghua L, Yamamura K, Sunada Y (2010) The transthyretin gene is expressed in Schwann cells of peripheral nerves. Brain Res 1348:222–225

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka T, Togashi S, Watanabe H, Iida H, Nagasaka K, Nakamura Y, Miwa M, Kobayashi F, Shindo K, Shiozawa Z (2009) Clinical and histopathological features of progressive-type familial amyloidotic polyneuropathy with TTR Lys54. J Neurol Sci 276:88–94

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Tashiro F, Yi S, Murakami T, Maeda S, Takahashi K, Shimada K, Okamura H, Yamamura K (1995) A 6-kb upstream region of the human transthyretin gene can direct developmental, tissue-specific, and quantitatively normal expression in transgenic mouse. J Biochem 117:169–175

    PubMed  CAS  Google Scholar 

  • Nakamura M, Ando Y (2004) Applications of gene therapy for familial amyloidotic polyneuropathy. Expert Opin Biol Th 4:1621–1627

    Article  CAS  Google Scholar 

  • Nakamura Y, Yutani C, Nakazato M, Date Y, Baba T, Goto Y (1999) A case of hereditary amyloidosis transthyretin variant Met30 with amyloid cardiomyopathy, less polyneuropathy, and the presence of giant cells. Pathol Int 49:898–902

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Ando Y, Nagahara S, Sano A, Ochiya T, Maeda S, Kawaji T, Ogawa M, Hirata A, Terazaki H, Haraoka K, Tanihara H, Ueda M, Uchino M, Yamamura K (2004) Targeted conversion of the transthyretin gene in vitro and in vivo. Gene Ther 11:838–846

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Yoshioka M, Moriuchi K, Yamamoto D, Tsuji M, Takubo T (2010) S-sulfonation of transthyretin is an important trigger step in the formation of transthyretin-related amyloid fibril. Biochim Biophys Acta 1804:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Nakazato M, Tanaka M, Matsukura S, Kangawa K, Matsuo H (1989) Quantitative analysis of amyloid fibril protein in systemic organs of patients with familial amyloidotic polyneuropathy. J Neurol Sci 89:235–242

    Article  PubMed  CAS  Google Scholar 

  • Nakazato M, Shiomi K, Miyazato M, Matsukura S (1992) Type I familial amyloidotic polyneuropathy in Japan. Intern Med 31:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Nichols WC, Padilla L-M, Benson MD (1989a) Prenatal detection of a gene for hereditary amyloidosis. Am J Med Genet 34:520–524

    Article  CAS  Google Scholar 

  • Nichols WC, Liepnieks JJ, McKusick VA, Benson MD (1989b) Direct sequencing of the gene for Maryland/German familial amyloidotic polyneuropathy type II and genotyping by allele-specific enzymatic amplification. Genomics 5:535–540

    Article  CAS  Google Scholar 

  • Noguchi H, Ohta M, Wakasugi S, Noguchi K, Nakamura H, Nakamura O, Miyakawa K, Takeya M, Suzuki M, Nagata N, Urano T, Oon T, Yamamura K (2002) Effect of the intestinal flora on amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Exp Anim 51:309–316

    Article  PubMed  CAS  Google Scholar 

  • Ohya Y, Jono, H, Nakamura M, Hayashida S, Ueda M, Obayashi K, Misumi S, Asonuma K, Ando Y, Inomata Y (2010) Effect of recipient-derived cells on the progression of familial amyloidotic polyneuropathy after liver transplantation: a retrospective study. Ann Clin Biochem 47:529–534

    Article  PubMed  CAS  Google Scholar 

  • Olofsson B-O, Grankvist K, Boman K, Forsberg K, Lafvas I, Lithner F (1989) Assessment of thyroid anad adrenal function in patients with familial amyloidotic polyneuropathy. J Intern Med 225:337–341

    Article  PubMed  CAS  Google Scholar 

  • Olofsson B-O, Grankvist K, Olsson T, Boman K, Forsberg K, Lafvas I, Lithner F (1991) Assessment of hypothalamic-pituitary function in patients with familial amyloidotic polyneuropathy. J Intern Med 229:55–59

    Article  PubMed  CAS  Google Scholar 

  • Olofsson B-O, Backman C, Karp K, Suhr OB (2002) Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type. Transplantation 73:745–751

    Article  PubMed  Google Scholar 

  • Palmieri L de C, Lima LM, Freire JB, Bleicher L, Polikarpov I, Almeida FC, Foguel D (2010) Novel Zn2+ -binding sites in human transthyretin: implications for amyloidogenesis and retinol-binding protein recognition. J Biol Chem 285:31731–31741

    Article  CAS  Google Scholar 

  • Pepys MB, Rademachero TW, Amatayakul-Chantler S, Williams P, Noble GE, Hutchinson WL, Hawkins PN, Nelson SR, Gallimore JR, Herbert J, Hutton T, Dwek RA (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc Nat Acad Sci USA 91:5602–5606

    Article  PubMed  CAS  Google Scholar 

  • Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, Leone O, Farsad M, Ciliberti P, Bacchi-Reggiani L, Fallani F, Branzi A, Rapezzi C (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99 m Tc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46:1076–1084

    Article  PubMed  Google Scholar 

  • Perugini E, Rappezi C, Piva T, Leone O, Bacchi-Reggiani L, Riva L, Salvi F, Lovato L, Branzi A, Fattori R (2006) Non-invasive evaluation of the myocardial substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance. Heart 92:343–349

    Article  PubMed  CAS  Google Scholar 

  • Petersen RB, Goren H, Cohen M, Richardson SL, Tresser N, Lynn A, Gali M, Estes M, Gambetti P (1997) Transthyretin amyloidosis: a new mutation associated with dementia. Ann Neurol 41:307–313

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer BA, Becerra SP, Borst DE, Wong P (2004) Expression of transthyretin and retinol binding protein mRNAs and secretion of transthyretin by cultured monkey retinal pigment epithelium. Mol Vis 10:23–30

    PubMed  CAS  Google Scholar 

  • Planté-Bordeneuve V, Ferreira A, Lalu T, Zaros C, Lacroix C, Adams D, Said G (2007) Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology 69:693–698

    Article  PubMed  CAS  Google Scholar 

  • Pomfret E, Lewis WD, Jenkins R, Bergethon P, Dubrey Simon W, Reisinger J, Falk R, Skinner M,(1998) Effect of orthotopic liver transplantation on the progression of familial amyloidotic polyneuropathy. Transplantation 65:918–925

    Article  PubMed  CAS  Google Scholar 

  • Powers ET, Powers DL (2008) Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys J 94:379–391

    Article  PubMed  CAS  Google Scholar 

  • Pras M, Prelli F, Franklin EC, Frangione B (1983) Primary structure of an amyloid prealbumin variant in familial polyneuropathy of Jewish origin. Proc Natl Acad Sci USA 80:539–542

    Article  PubMed  CAS  Google Scholar 

  • Prashantha DK, Taly AB, Sinha S, Yasha TC, Gayathri N, Kovur J, Vijayan J (2010) Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description. Ann Indian Acad Neurol 13:142–144

    Article  PubMed  CAS  Google Scholar 

  • Prelli F, Pras M, Frangione B (1985) The primary structure of human tissue amyloid P component from a patient with primary idiopathic amyloidosis. J Biol Chem 280:12895–12898

    Google Scholar 

  • Pröpsting MJ, Kubicka S, Genschel J, Manns MP, Lochs H, Schmidt HH-J (2000) Inhibition of transthyretin-met30 expression using inosine15.1-hammerhead ribozymes in cell culture. Biochem Biophys Res Comm 279:970–973

    Article  PubMed  CAS  Google Scholar 

  • Quintas A, Saraiva MJ, Brito RM (1997) The amyloidogenic potential of transthyretin variants correlates with their tendency to aggregate in solution. FEBS Lett 418:297–300

    Article  PubMed  CAS  Google Scholar 

  • Quintas A, Saraiva MJ, Brito RM (1999) The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J Biol Chem 74:32943–32949

    Article  Google Scholar 

  • Quintas A, Vaz DC, Cardoso I, Saraiva MJM, Brito RMM (2001) Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem 276:27207–27213

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Goodman DS (1969) The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinal-binding protein complex. J Biol Chem 244:3230–3237

    PubMed  CAS  Google Scholar 

  • Redondo C, Damas AM, Olofsson A, Lundgren E, Saraiva MJ (2000a) Search for intermediate structures in transthyretin fibrillogenesis: soluble tetrameric Tyr78Phe TTR expresses a specific epitope present only in amyloid fibrils. J Mol Biol 304:461–470

    Article  CAS  Google Scholar 

  • Redondo C, Damas AM, Saraiva MJ (2000b) Designing transthyretin mutants affecting tetrameric structure: implications in amyloidogenicity. Biochem J 348(Pt1):167–172

    Article  CAS  Google Scholar 

  • Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: transthyretin monomers and non-native oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822

    Article  PubMed  CAS  Google Scholar 

  • Reixach N, Adamski-Werner SL, Kelly JW, Koziol J, Buxbaum JN (2006) Cell based screening of inhibitors of transthyretin aggregation. Biochem Biophys Res Commun 348:889–897

    Article  PubMed  CAS  Google Scholar 

  • Reixach N, Foss TR, Santelli E, Pascual J, Kelly JW, Buxbaum JN (2008) Human-murine transthyretin heterotetramers are kinetically stable and non-amyloidogenic. A lesson in the generation of transgenic models of diseases involving oligomeric proteins. J Biol Chem 283:2098–2107

    Article  PubMed  CAS  Google Scholar 

  • Riboldi G, Del Bo R, Ranieri M, Magri F, Sciacco M, Moggio M, Bresolin N, Corti S, Comi GP (2011) Tyr78Phe transthyretin mutation with predominant motor neuropathy as the initial presentation. Case Rep Neurol 3:62–68

    Article  PubMed  Google Scholar 

  • Richardson SJ, Lemkine GF, Alfama G, Hassani Z, Demeneix BA (2007) Cell division and apoptosis in the adult neural stem cell niche are differentially affected in transthyretin null mice. Neurosci Lett 421:234–238

    Article  PubMed  CAS  Google Scholar 

  • Said G (2003) Familial amyloid polyneuropathy: mechanisms leading to nerve degeneration. Amyloid 10(Suppl. 1):7–12

    PubMed  Google Scholar 

  • Said G, Ropert A, Faux N (1984) Length-dependent degeneration of fibers in Portuguese amyloid poly neuropathy: a clinicopathologic study. Neurology 34:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Sakashita N, Ando Y, Jinnouchi K, Yoshimatsu M, Terazaki H, Obayashi K, Takeya M (2001) Familial amyloidotic polyneuropathy (ATTR Val30Met) with widespread cerebral amyloid angiopathy and lethal cerebral hemorrhage. Pathol Int 51:476–480

    Article  PubMed  CAS  Google Scholar 

  • Saraiva MJM (2001) Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum Mutat 17:493–503

    Article  PubMed  CAS  Google Scholar 

  • Saraiva MJ, Costa PP, Goodman DS (1983) Studies on plasma transthyretin (prealbumin) in familial amyloidotic polyneuropathy, Portuguese type. J Lab Clin Med 102:590–603

    PubMed  CAS  Google Scholar 

  • Saraiva MJ, Birken S, Costa PP, Goodman DS (1984) Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J Clin Invest 74:104–119

    Article  PubMed  CAS  Google Scholar 

  • Saraiva MJ, Sherman W, Marboe C, Figueira A, Costa P, de Freitas AF, Gawinowicz MA (1990) Cardiac amyloidosis: report of a patient heterozygous for the transthyretin isoleucine 122 variant. Scand J Immunol 32:341–346

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985) Structure of the chromosomal gene for human serum prealbumin. Gene 37:191–197

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Ando Y, Susuki S, Mikami F, Ikemizu S, Nakamura M, Suhr O, Anraku M, Kai T, Suico MA, Shuto T, Mizuguchi M, Yamagata Y, Kai H (2006) Chromium (III) ion and thyroxine cooperate to stabilize the transthyretin tetramer and suppress in vitro amyloid fibril formation. FEBS Lett 580:491–496

    Article  PubMed  CAS  Google Scholar 

  • Sawabe M, Hamamatsu A, Ito T, Arai T, Ishikawa K, Chida K, Izumiyama N, Honma N, Takubo K, Nakazato M (2003) Early pathogenesis of cardiac amyloid deposition in senile systemic amyloidosis: close relationship between amyloid deposits and the basement membranes of myocardial cells. Virchows Arch 442:252–257

    PubMed  Google Scholar 

  • Schneider F, Hammarström P, Kelly JW (2001) Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci 10:1606–1613

    Article  PubMed  CAS  Google Scholar 

  • Schormann N, Murrell JR, Benson MD (1998) Tertiary structures of amyloidogenic and non-amyloidogenic transthyretin variants: new model for amyloid fibril formation. Amyloid 5:175–187

    Article  PubMed  CAS  Google Scholar 

  • Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol 258:R338–R345

    PubMed  CAS  Google Scholar 

  • Schwarzman AL, Tsiper M, Wente H, Wang A, Vitek MP, Vasiliev V, Goldgaber D (2004) Amyloidogenic and anti-amyloidogenic properties of recombinant transthyretin variants. Amyloid 11:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sebastião MP, Saraiva NJ, Damas AM (1998) The crystal structure of amyloidogenic Leu55Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils. J Biol Chem 273:24715–24722

    Article  PubMed  Google Scholar 

  • Sebastião MP, Merlini G, Saraiva MJ, Damas AM (2000) The molecular interaction of 4-iodo-4-deoxydoxorubicin with Leu-55Pro transthyretin ‘amyloid-like’ oligomer leading to disaggregation. Biochem J 351:273–279

    Article  PubMed  Google Scholar 

  • Sekijima Y, Hammarström P, Matsumura M, Shimizu Y, Iwata M, Tokuda T, Ikeda S, Kelly JW (2003) Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous system pathology. Lab Invest 83:409–417

    PubMed  CAS  Google Scholar 

  • Sekijima Y, Wiseman RL, Balch WE, Kelly JW (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85

    Article  PubMed  CAS  Google Scholar 

  • Sekijima Y, Kelly JW, Ikeda S (2008) Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des 14:3219–3230

    Article  PubMed  CAS  Google Scholar 

Editors

  • Sekijima Y, Yoshida K, Tokuda T, Ikeda S (2001) (Last updated 2012). Familial transthyretin amyloidosis. In: Pagon RA, Bird TD, Dolan CR et al (eds) GeneReviews (Internet). University of Washington, Seattle, 1993

    Google Scholar 

  • Serga AA, Altenbach C, Gingery M, Hubbell WL, Yeates TO (2001) Identification of a subunit interface in transthyretin amyloid fibrils: evidence for self-assembly from oligomeric building blocks. Biochemistry 40:9089–9096

    Article  CAS  Google Scholar 

  • Serot JM, Christmann D, Dubost T, Couturier M (1997) Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 63:506–508

    Google Scholar 

  • Serpell LC, Sunde M, Fraser PE, Luther PK, Morris EP, Sangren O, Lundgren E, Blake CCF (1995) Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J Mol Biol 254:113–118

    Article  PubMed  CAS  Google Scholar 

  • Shimojima Y, Morita H, Kobayashi S, Talei Y, Ikeda S (2008) Ten-year follow-up of peripheral nerve function in patients with familial amyloid polyneuropathy after liver transplantation. J Neurol 255:1220–1225

    Article  PubMed  Google Scholar 

  • Shnyrov VL, Villar E, Zhadan GG, Sanchez-Ruiz JM, Quintas A, Saraiva MJ, Brito RM (2000) Comparative calorimetric study of non-amyloidogenic and amyloidogenic variants of the homotetrameric protein transthyretin. Biophys Chem 88:61–67

    Article  PubMed  CAS  Google Scholar 

  • Simões CJV, Mukherjee T, Brito RMM, Jackson RM (2010) Toward the discovery of functional transthyretin amyloid inhibitors: application of virtual screening methods. J Chem Inf Model 50:1806–1820

    Article  PubMed  CAS  Google Scholar 

  • Smeland S, Kolset SO, Lyon M, Kaare R, Norum KR, Blomhoff R (1997) Binding of perlecan to transthyretin in vitro. Biochem J 326:829–836

    PubMed  CAS  Google Scholar 

  • Soares ML, Coelho T, Sousa A, Batalov S, Conceição I, Sales-Luís ML, Ritchie MD, Williams SM, Nievergelt CM, Schork NJ, Saraiva MJ, Buxbaum JN (2005) Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease. Hum Mol Genet 14:543–553

    Article  PubMed  CAS  Google Scholar 

  • Sobue G, Nakao N, Murakami K, Yasuda T, Sahashi K, Mitsuma T, Sasaki H, Sakaki Y, Takahashi A (1990) Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain 113:903–919

    Article  PubMed  Google Scholar 

  • Sousa MM, Saraiva MJ (2003) Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling. Prog Neurobiol 71:385–400

    Article  PubMed  CAS  Google Scholar 

  • Sousa MM, Saraiva MJ (2008) Transthyretin is not expressed by dorsal root ganglia cells. Exp Neurol 214:362–365

    Article  PubMed  CAS  Google Scholar 

  • Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ (2001a) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of non-fibrillar aggregates. Am J Pathol 159:1993–2000

    Article  CAS  Google Scholar 

  • Sousa MM, Du Yan S, Fernandes R, Guimarães A, Stern D, Saraiva MJ (2001b) Familial amyloid polyneuropathy: receptor for advanced glycation endproducts-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci 21:7576–7586

    CAS  Google Scholar 

  • Sousa MM, Fernandes R, Palha JA, Taboada A, Vieira P, Saraiva MJ (2002) Evidence for early cytotoxic aggregates in transgenic mice for human transthyretin Leu55Pro. Am J Pathol 161:1935–1948

    Article  PubMed  CAS  Google Scholar 

  • Sousa MM, Ferrao J, Fernandes R, Guimaraes A, Geraldes JB, Perdigoto R, Tome L, Mota O, Negrao L, Furtado AL, Saraiva MJ (2004) Deposition and passage of transthyretin through the blood-nerve barrier in recipients of familial amyloid polyneuropathy livers. Lab Invest 84:865–873

    Article  PubMed  CAS  Google Scholar 

  • Sousa MM, Barbas do Amaral J, Guimarães A, Saraiva MJ (2005) Up-regulation of the extracellular matrix remodeling genes, biglycan, neutrophil gelatinase-associated lipocalin and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB J 19:124–126

    PubMed  CAS  Google Scholar 

  • Skare J, Yazici H, Erken E, Debe H, Cohen A, Milunsky A, Skinner M (1990) Homozygosity for the met30 transthyretin gene in a Turkish kindred with familial amyloidotic polyneuropathy. Hum Genet 86:89–90

    Article  PubMed  CAS  Google Scholar 

  • Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104:1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Stangou AJ, Hawkins PN (2004) Liver transplantation in transthyretin-related familial amyloid polyneuropathy. Curr Opin Neurol 17:615–620

    Article  PubMed  Google Scholar 

  • Stangou AJ, Heaton ND, Hawkins PN (2005) Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. N Engl J Med 352:2356

    Article  PubMed  CAS  Google Scholar 

  • Steinrauf LK, Cao Y, Hamilton J, Murrell J, Liepnieks JJ, Benson MD (1991) Preparation and crystallization of human transthyretin (prealbumin) variants. Biochem Biophys Res Commun 179:804–809

    Article  PubMed  CAS  Google Scholar 

  • Stockigt JR, Lim CF, Barlow JW, Wynne KN, Mohr VS, Topliss DJ, Hamblin PS, Sabto J (1985) Interaction of furosemide with serum thyroxine binding sites: in vivo and in vitro studies and comparison with other inhibitors. J Clin Endocrinol Metab 60:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479

    Article  PubMed  CAS  Google Scholar 

  • Suhr OB, Ericzon BG, Friman S (2002) Long-term follow-up of survival of liver transplant recipients with familial amyloid polyneuropathy (Portuguese type). Liver Transplant 8:787–794

    Article  Google Scholar 

  • Suk JY, Zhang F, Balch WE, Linhardt RJ, Kelly JW (2006) Heparin accelerates gelsolin amyloidogenesis. Biochemistry 45:2234–2242

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yi S, Kimura Y, Araki S (1991) Familial amyloidotic polyneuropathy type 1 in Kumamoto, Japan: a clinicopathologic, histochemical, immunohistochemical, and ultrastructural study. Hum Pathol 21:519–527

    Article  Google Scholar 

  • Takaoka Y, Tashiro F, Yi S, Maeda S, Shimada K, Takahashi K, Sakaki Y, Yamamura K (1997) Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy, type I. Transgenic Res 6:261–269

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Gono T, Yazaki M, Ikeda S, Ikegami T, Hashikura Y, Miyagawa S, Hoshii Y (2007) Transthyretin-derived amyloid deposition on the gastric mucosa in domino recipients of familial amyloid polyneuropathy liver. Liver Transplant 13:215–218

    Article  Google Scholar 

  • Tanaka K, Yamada T, Ohyagi Y, Asahara H, Horiuchi I, Kira J (2001) Suppression of transthyretin expression by ribozymes: a possible therapy for familial amyloidotic polyneuropathy. J Neurol Sci 183:79–84

    Article  PubMed  CAS  Google Scholar 

  • Tanskanen M, Peuralinna T, Polvikoski T, Notkola I-L, Sulkava R, Hardy J, Singleton A, Kiuru-Enari S, Paetau A, Tienari PJ, Myllykangas L (2008) Senile systemic amyloidosis affects 25 % of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 40:232–239

    Article  PubMed  CAS  Google Scholar 

  • Tawara S, Nakazato M, Kangawa K, Matsuo H, Araki S (1983) Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem Biophys Res Commun 116:880–888

    Article  PubMed  CAS  Google Scholar 

  • Teng MH, Yin JY, Vidal R, Ghiso J, Kumar A, Rabenou R, Shah A, Jacobson DR, Tagoe C, Gallo G, Buxbaum J (2001) Amyloid and nonfibrillar deposits in mice transgenic for wild-type human transthyretin: a possible model for senile systemic amyloidosis. Lab Invest 81:385–396

    Article  PubMed  CAS  Google Scholar 

  • Terry CJ, Damas AM, Oliveira P, Saraiva MJM, Alves IL, Costa PP, Matias PM, Sakaki Y, Blake CCF (1993) Structure of Met30 variant of transthyretin and its amyloidogenic implications. EMBO J 12:735–741

    PubMed  CAS  Google Scholar 

  • Thylén C, Wahlqvist J, Haettner E, Sandgren O, Holmgren G, Lundgren E (1993) Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation. EMBO J 12:743–748

    PubMed  Google Scholar 

  • Togashi S, Watanabe H, Nagasaka T, Shindo K, Shiozawa Z, Maeda S, Tawata M, Onaya T (1999) An aggressive familial amyloidotic polyneuropathy caused by a new variant transthyretin Lys54. Neurology 53:637–639

    Article  PubMed  CAS  Google Scholar 

  • Tojo K, Sekijima Y, Kelly JW, Ikeda S (2006) Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 56:441–449

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Fujimura H, Ueno S, Yoshikawa H, Kaido M, Nishimura T, Yorifuji S, Yanagihara T (1995) Familial amyloid polyneuropathy associated with transthyretin Gly42 mutation: a quantitative light and electron microscopic study of the peripheral nervous system. Acta Neuropathol 90:516–525

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki T, Mita S, Maeda S, Araki S, Shimada K (1985) Structure of the human prealbumin gene. J Biol Chem 260:12224–12227

    PubMed  CAS  Google Scholar 

  • Ueda M, Misumi Y, Mizuguchi M, Nakamura M, Yamashita T, Sekijima Y, Ota K, Shinriki S, Jono H, Ikeda S, Suhr OB, Ando Y (2009) SELDI-TOF mass spectrometry evaluation of variant transthyretins for diagnosis and pathogenesis of familial amyloidotic polyneuropathy. Clin Chem 55:1223–1227

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Horibata Y, Shono M, Misumi Y, Oshima T, Su Y, Tasaki M, Shinriki S, Kawahara S, Jono H, Obayashi K, Ogawa H, Ando Y (2011) Clinicopathological features of senile systemic amyloidosis: an ante- and post-mortem study. Mod Pathol 24:1533–1544 (electronical form)

    Article  PubMed  CAS  Google Scholar 

  • Uemichi T, Murrell JR, Zeldenrust S, Benson MD (1992) A new mutant transthyretin (Arg 10) associated with familial amyloid polyneuropathy. J Med Genet 29:888–891

    Article  PubMed  CAS  Google Scholar 

  • Uemichi T, Liepnieks JJ, Benson MD (1997) A trinucleotide deletion in the transthyretin gene (AV122) in a kindred with familial amyloidotic polyneuropathy. Neurology 48:1667–1670

    Article  PubMed  CAS  Google Scholar 

  • Uemichi T, Uitti RJ, Koeppen AH, Donat JR, Benson MD (1999) Oculoleptomeningeal amyloidosis associated with a new transthyretin variant Ser64. Arch Neurol 56:1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Vital C, Vital A, Bouillot-Eimer S, Brechenmacher C, Ferrer X, Lagueny A (2004) Amyloid neuropathy: a retrospective study of 35 peripheral nerve biopsies. J Peripher Nerv Syst 9:232–241

    Article  PubMed  Google Scholar 

  • Wakasugi S, Inomoto T, Yi S, Naito M, Uehira M, Iwanaga T, Maeda S, Araki K, Miyazaki J, Takahashi K, Shimada K, Yamamura K (1987) A transgenic mouse model of familial amyloidotic polyneuropathy. Proc Jpn Acad 63(B):344–347

    Google Scholar 

  • Wallace MR, Naylor SL, Kluve-Beckerman B, Long GL, Mc-Donald L, Shows TB, Benson MD (1985) Localization of the human prealbumin gene to chromosome 18. Biochem Biophys Res Commun 129:753–758

    Article  PubMed  CAS  Google Scholar 

  • Wallace MR, Dwulet FE, Conneally PM, Benson MD (1986) Biochemical and molecular genetic characteristics of a new variant prealbumin associated with hereditary amyloidosis. J Clin Invest 78:6–12

    Article  PubMed  CAS  Google Scholar 

  • Wallace MR, Conneally PM, Benson MD (1988) A DNA test for Indiana/Swiss hereditary amyloidosis (FAP II). Am J Hum Genet 43:182–187

    PubMed  CAS  Google Scholar 

  • Westermark P, Johansson B, Natvig JB (1979) Senile cardiac amyloidosis: evidence of two different amyloid substances in the ageing heart. Scand. J Immunol 10:303–308

    CAS  Google Scholar 

  • Westermark P, Sletten K, Johansson B, Cornwell GG 3rd (1990) Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA 87:2843–2845

    Article  PubMed  CAS  Google Scholar 

  • White JT, Kelly JW (2001) Support for the multigenic hypothesis of amyloidosis: the binding stoichiometry of retinol-binding protein, vitamin A, and thyroid hormone influences transthyretin amyloidogenicity in vitro. Proc Natl Acad Sci USA 98:13019–13024

    Article  PubMed  CAS  Google Scholar 

  • Whitehead AS, Skinner M, Bruns GA, Costello W, Edge MD, Cohen AS, Sipe JD (1984) Cloning of human prealbumin complementary DNA. Localization of the gene to chromosome 18 and detection of a variant prealbumin allele in a family with familial amyloid polyneuropathy. Mol Biol Med 2:411–423

    PubMed  CAS  Google Scholar 

  • Wojtczak A, Cody V, Luft JR, Pangborn W (1996) Structures of human transthyretin complexed with thyroxine at 2.0 Å resolution and 3’,5’-dinitro-N-acetyl-L-thyronine at 2.2 Å resolution. Acta Crystallogr D 52:758–765

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Hatakeyama S, Tsukagoshi H (1984) Peripheral and autonomic nerve lesions in systemic amyloidosis. Three pathological types of amyloid polyneuropathy. Acta Pathol Jpn 34:1251–1266

    PubMed  CAS  Google Scholar 

  • Yamamura K, Wakasugi S, Maeda S, Inomoto T, Iwanaga T, Uehira M, Araki K, Miyazaki J, Shimada K (1987) Tissue-specific and developmental expression of human transthyretin gene in transgenic mice. Dev Genet 8:195–205

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Hamidi Asl K, Yazaki M, Benson MD (2005) A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid 12:127–130

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Costa RH, Darnell JE Jr, Chen J, Van Dyke TA (1990) Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO J 9:869–878

    PubMed  CAS  Google Scholar 

  • Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897

    PubMed  CAS  Google Scholar 

  • Yang M, Lei M, Huo S (2003) Why is Leu55→Pro55 transthyretin variant the most amyloidogenic: insights from molecular dynamics simulations of transthyretin monomers. Protein Sci 12:1222–1231

    Article  PubMed  CAS  Google Scholar 

  • Yazaki M, Tokuda T, Nakamura A, Higashikata T, Koyama J, Higuchi K, Harihara Y, Baba S, Kametani F, Ikeda S (2000) Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem Biophys Res Commun 274:702–706

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Takahashi K, Naito M, Tashiro F, Wakasugi S, Maeda S, Shimada K, Yamamura K, Araki S (1991) Systemic amyloidosis in transgenic mice carrying the human mutant transthyretin (Met30) gene. Pathologic similarity to human familial amyloidotic polyneuropathy, Type I. Am J Patbol 138:403–412

    CAS  Google Scholar 

  • Yoshimatsu S, Amdo Y, Terazaki H, Sakashita N, Tada S, Yamashita T, Suga M, Uchino M, Ando M (1998) Endoscopic and pathological manifestation of the gastrointestinal tract in familial amyloidotic polyneuropathy type I (Met30). J Intern Med 243:65–72

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga T, Nakazato M, Ikeda S, Ohnishi A (1992) Homozygosity for the transthyretin-Met30 gene in three Japanese siblings with type I familial amyloidotic polyneuropathy. Neurology 42:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Li Z, Araki K, Haruna K, Yamaguchi K, Araki M, Takeya M, Ando Y, Yamamura K (2008) Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus. Genes Cells 13:1257–1268

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamura Nagasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagasaka, T. (2012). Familial Amyloidotic Polyneuropathy and Transthyretin. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_21

Download citation

Publish with us

Policies and ethics