Advertisement

Black Holes

  • Norbert Straumann
Part of the Graduate Texts in Physics book series (GTP)

Abstract

This extended chapter of almost hundred pages on black hole physics is a central part of the book. We begin with Israel’s original demonstration of the statement that a static black hole solution of Einstein’s vacuum equation has to be spherically symmetric, and is thus a Schwarzschild black hole. Then a detailed derivation of the Kerr solution is given, that makes efficient use of Cartan’s calculus of differential forms. The properties of this rotating black hole solution, that ranks among the most important solutions of Einstein’s (vacuum) equations, are carefully analysed, and it is shown in a more general setting what is behind the results. Later, this is also used in derivations of the four laws of black hole dynamics, which are formally closely related to the main laws of thermodynamics. A section is devoted on accretion tori around Kerr black holes. Furthermore, we present the evidence for black holes in some X-ray binary systems and for supermassive black holes in galactic centres.

Keywords

Black Hole Event Horizon Active Galactic Nucleus Kerr Black Hole Null Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Textbooks on General Relativity: Selection of (Graduate) Textbooks

  1. 9.
    R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984) zbMATHGoogle Scholar
  2. 10.
    G. Ellis, S. Hawking, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973) zbMATHGoogle Scholar
  3. 15.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973) Google Scholar
  4. 16.
    N. Straumann, General Relativity and Relativistic Astrophysics. Texts and Monographs in Physics (Springer, Berlin, 1984) CrossRefGoogle Scholar

Textbooks on General Physics and Astrophysics

  1. 33.
    V.I. Arnold, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60 (Springer, Berlin, 1989) Google Scholar

Mathematical Tools: Modern Treatments of Differential Geometry for Physicists

  1. 39.
    R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Benjamin, Elmsford, 1978) zbMATHGoogle Scholar

Mathematical Tools: Selection of Mathematical Books

  1. 46.
    B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, San Diego, 1983) zbMATHGoogle Scholar
  2. 59.
    M.E. Taylor, Partial Differential Equations (Springer, New York, 1996) CrossRefGoogle Scholar

Research Articles, Reviews and Specialized Texts: Chapter  4

  1. 140.
    R. Schödel et al., Nature 419, 694 (2002). astro-ph/0210426 ADSCrossRefGoogle Scholar

Research Articles, Reviews and Specialized Texts: Chapter  7

  1. 243.
    R. Schoen, S.-T. Yau, Commun. Math. Phys. 90, 575 (1983) MathSciNetADSzbMATHCrossRefGoogle Scholar

Research Articles, Reviews and Specialized Texts: Chapter 8

  1. 244.
    W. Israel, Phys. Rev. 164, 1776 (1967) ADSCrossRefGoogle Scholar
  2. 245.
    W. Israel, Commun. Math. Phys. 8, 245 (1968) MathSciNetADSCrossRefGoogle Scholar
  3. 246.
    M. Heusler, Black Hole Uniqueness Theorems (Cambridge University Press, Cambridge, 1996) zbMATHCrossRefGoogle Scholar
  4. 247.
    M. Heusler, Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 1, 6 (1998). http://www.livingreviews.org MathSciNetADSGoogle Scholar
  5. 248.
    M.S. Volkov, D.V. Gal’tsov, Phys. Rep. 319, 1–83 (1999) MathSciNetADSCrossRefGoogle Scholar
  6. 249.
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 250.
    E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 251.
    E.T. Newman et al., J. Math. Phys. 6, 918 (1965) ADSCrossRefGoogle Scholar
  9. 252.
    G.C. Debney et al., J. Math. Phys. 10, 1842 (1969) MathSciNetADSCrossRefGoogle Scholar
  10. 253.
    G. Neugebauer, R. Meinel, J. Math. Phys. 44, 3407 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 254.
    R. Meinel, arXiv:1108.4854
  12. 255.
    R.D. Blandford, R.L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977) ADSGoogle Scholar
  13. 256.
    K.S. Thorne, R.H. Price, D.A. MacDonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven, 1986) Google Scholar
  14. 257.
    N. Straumann, The membrane model of black holes and applications, in Black Holes: Theory and Observation, ed. by F.W. Hehl, C. Kiefer, R.J.K. Metzler (Springer, Berlin, 1998) Google Scholar
  15. 258.
    N. Straumann, Energy extraction from black holes, in Recent Developments in Gravitation and Cosmology, ed. by A. Macias, C. Lämmerzahl, A. Camacho. AIP Conference Proceedings, vol. 977 (American Institute of Physics, New York, 2008). arXiv:0709.3895 Google Scholar
  16. 259.
    B. Carter, Commun. Math. Phys. 10, 280 (1968) zbMATHGoogle Scholar
  17. 260.
    J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972) ADSCrossRefGoogle Scholar
  18. 261.
    M. Heusler, N. Straumann, Class. Quantum Gravity 10, 1299 (1993) MathSciNetADSCrossRefGoogle Scholar
  19. 262.
    M. Heusler, N. Straumann, Phys. Lett. B 315, 55 (1993) MathSciNetADSCrossRefGoogle Scholar
  20. 263.
    V. Iyer, R.M. Wald, Phys. Rev. D 50, 846 (1994) MathSciNetADSCrossRefGoogle Scholar
  21. 264.
    R.M. Wald, Phys. Rev. D 56, 6467 (1997). gr-qc/9704008 MathSciNetADSCrossRefGoogle Scholar
  22. 265.
    R.M. Wald, Black holes and thermodynamics, in Black Holes and Relativistic Stars, ed. by R.M. Wald (University of Chicago Press, Chicago, 1998) Google Scholar
  23. 266.
    B. Carter, J. Math. Phys. 10, 70 (1969) ADSzbMATHCrossRefGoogle Scholar
  24. 267.
    B. Carter, Black hole equilibrium states, in Black Holes, ed. by C. DeWitt, B.S. DeWitt (Gordon & Breach, New York, 1973) Google Scholar
  25. 268.
    D.R. Gies, C.T. Bolton, Astrophys. J. 304, 371 (1986) ADSCrossRefGoogle Scholar
  26. 269.
    A.P. Cowley et al., Astrophys. J. 272, 118 (1983) ADSCrossRefGoogle Scholar
  27. 270.
    J.E. McClintock, R.A. Remillard, Astrophys. J. 308, 110 (1986) ADSCrossRefGoogle Scholar
  28. 271.
    J.A. Orosz, Inventory of black hole binaries, in IAU Symposium No. 212: A Massive Star Odyssey, from Main Sequence to Supernova, Lanzarote, 2002, ed. by K.A. van der Hucht, A. Herraro, C. Esteban (Astronomical Society of the Pacific, San Francisco, 2003). astro-ph/0209041 Google Scholar
  29. 272.
    R.M. Wagner et al., Astrophys. J. 556, 42 (2001) ADSCrossRefGoogle Scholar
  30. 273.
    J.E. McClintock et al., Astrophys. J. 551, L147 (2001) ADSCrossRefGoogle Scholar
  31. 274.
    M. Miyoshi, J. Moran, J. Herrnstein, L. Greenhill, N. Nakai, P. Diamond, M. Inone, Nature 373, 127 (1995) ADSCrossRefGoogle Scholar
  32. 275.
    T. Ott et al., ESO Messenger 111, 1 (2003). astro-ph/0303408 ADSGoogle Scholar
  33. 276.
    M. Kozlowski, M. Jaroszynski, M.A. Abramowicz, Astron. Astrophys. 63, 209 (1978) MathSciNetADSzbMATHGoogle Scholar
  34. 277.
    M. Sikore, M. Jaroszynski, M.A. Abramowicz, Astron. Astrophys. 63, 221 (1978) ADSGoogle Scholar
  35. 278.
    D. Giulini, J. Math. Phys. 39, 6603 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 279.
    P.T. Chrusciel, E. Delay, G. Galloway, R. Howard, Ann. Inst. Henri Poincaré 2, 109 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 280.
    P.T. Chrusciel, Helv. Phys. Acta 69, 529 (1996) MathSciNetADSzbMATHGoogle Scholar
  38. 281.
    J.H. Krolik, Active Galactic Nuclei (Princeton University Press, Princeton, 1999) Google Scholar
  39. 282.
    Ch.J. Willott, R.J. McLure, M. Jarvis, Astrophys. J. 587, L15 (2003) ADSCrossRefGoogle Scholar
  40. 283.
    R. Penrose, Structure of spacetime, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, ed. by C. DeWitt, J.A. Wheeler (Benjamin, New York, 1968) Google Scholar
  41. 284.
    R. Genzel et al., Nature 425, 934 (2003) ADSCrossRefGoogle Scholar
  42. 285.
    M.J. Valtonen et al., Nature 452, 851 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Norbert Straumann
    • 1
  1. 1.Mathematisch-Naturwiss. Fakultät, Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland

Personalised recommendations