Skip to main content

Contact Modelling in Multibody Systems by Means of a Boundary Element Co-simulation and a Dirichlet-to-Neumann Algorithm

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

The present contribution introduces the modelling of elastic contacts by coupled multibody an boundary element systems. Compared to contacts modelled by impact laws, physically more accurate results can be obtained. Due to the use of boundary element systems, the contact stresses are obtained within the contact calculation.

A new three-dimensional contact element for boundary element systems is developed. The mortar element uses the mixed formulation of boundary element formulations. The algorithm for the iteration of contact states is based on an Dirichlet-to-Neumann algorithm. Herein, both contacting bodies are calculated serially. In the first calculation step one of the contacting bodies represents a rigid obstacle for the other elastic one. The resulting reaction forces on the elastic body are partially transferred on the other one, which is for the second calculation step no longer rigid. As a result, the obstacle is deformed and the next iteration starts. The algorithm converges if the numerical equilibrium in the contact interface is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliabadi, F.: The Boundary Element Method: Applications in Solids and Structures. Wiley, New York (2002)

    MATH  Google Scholar 

  2. Ambrósio, J., Rauter, F., Pereira, M., Pombo, J.: A flexible multibody pantograph model for the analysis of the catenary-pantograph contact problem. In: Fracek, J., Wojtyra, M. (eds.) ECCOMAS Thematic Conference: Multibody Dynamics, Warsaw (2009)

    Google Scholar 

  3. Amirouche, F.: Fundamentals of Multibody Dynamics. Theory and Applications. Birkhäuser, Boston (2005)

    Google Scholar 

  4. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beer, G., Smith, I., Duenser, C.: The Boundary Element Method with Programming: For Engineers and Scientists. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Bernardi, C., Maday, Y., Patera, A.: A new conforming approach to domain decomposition: the mortar element. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Wiley, New York (1992)

    Google Scholar 

  7. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lecture note No. 21, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2003)

    Google Scholar 

  8. Brebbia, C.A., Wrobel, L.C., Partridge, P.W.: Dual Reciprocity Boundary Element Method. Springer, Berlin (1991)

    Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  10. Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-simulation techniques: analytical investigations based on a 2-DOF test model. In: Mikkola, A. (ed.) Proceedings of the 1st Joint International Conference on Multibody System Dynamics—IMSD, Lappeenranta, pp. 71–83 (2010)

    Google Scholar 

  11. Cowper, G.R.: Gaussian quadrature formulas for triangles. Int. J. Numer. Methods Eng. 7, 405–408 (1973)

    Article  MATH  Google Scholar 

  12. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. J. Aircr. 6(7), 1313–1319 (1968)

    MATH  Google Scholar 

  13. Danson, D.J.: A boundary element formulation of problems in linear isotropic elasticity with body forces. In: 3rd International Conference on Boundary Element Methods, pp. 105–122 (1981)

    Google Scholar 

  14. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eberhard, P.: Kontaktuntersuchungen durch hybride Mehrkörpersystem/Finite Elemente Simulationen. Shaker, Aachen (2000)

    Google Scholar 

  16. Foley, J.D., Van Dam, A., Feiner, S.K., Hughes, J.F., Phillips, R.L.: Introduction to Computer Graphics. Addison-Wesley Longman, Amsterdam (1993)

    Google Scholar 

  17. Gaul, L., Fiedler, C.: Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig (1998)

    Google Scholar 

  18. Gaul, L., Fischer, M.: Large-scale simulations of acoustic-structure interaction using the fast multipole BEM. Z. Angew. Math. Mech. 86, 4–17 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayami, K., Sauter, S.: Application of the panel clustering method to the three-dimensional elastostatic problem. In: Boundary Elements XIX, pp. 625–635. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  21. Hayami, K., Sauter, S.: Panel clustering for 3-D elastostatics using spherical harmonics. In: Boundary Elements XX, pp. 289–299. Computational Mechanics Publications, Southampton (1998)

    Google Scholar 

  22. Koch, A.: Implementierung eines direkten Randelementverfahrens und einer Panel-Clustering-Methode zur Berechnung von Temperaturproblemen. Master thesis, Universität Rostock (2011)

    Google Scholar 

  23. Kögl, M.: A boundary element method for dynamic analysis of anisotropic elastic, piezoelectric, and thermoelastic solids. Ph.D. thesis, Institut A für Mechanik (Bericht 6/2000), Universität Stuttgart (2000)

    Google Scholar 

  24. Krause, R.H.: Monotone multigrid methods for Signorini’s problem with friction. Ph.D. thesis, FU Berlin (2001)

    Google Scholar 

  25. Krause, R.H., Wohlmuth, B.I.: A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5, 139–148 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lehmann, T., Schittkowski, K., Spickenreuther, T.: MIQL: a Fortran code for convex mixed-integer quadratic programming—user’s guide. Tech. Rep. 1, Department of Computer Science, University of Bayreuth (2009)

    Google Scholar 

  27. McDevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48, 1525–1547 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Park, K., Felippa, C., Rebel, G.: A simple algorithm for localized construction of non-matching structural interfaces. Int. J. Numer. Methods Eng. 53, 2117–2142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  30. Puso, M.A.: A 3D mortar method for solid mechanics. Int. J. Numer. Methods Eng. 59, 315–336 (2004)

    Article  MATH  Google Scholar 

  31. Rebel, G., Park, K., Felippa, C.: A contact formulation based on localized Lagrange multipliers: formulation and application to two-dimensional problems. Int. J. Numer. Methods Eng. 54, 263–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schiehlen, W., Eberhard, P.: Technische Dynamik. Teubner, Leipzig (2004)

    Book  MATH  Google Scholar 

  33. Thomson, W.: Note on the integration of the equations of equilibrium of an elastic solid. Cambridge and Dublin Mathematical Journal 3, 87–89 (1848)

    Google Scholar 

  34. Vodička, R., Mantič, V., Paris, F.: SGBEM with Lagrange multipliers applied to elastic domain decomposition problems with curved interfaces using non-matching meshes. Int. J. Numer. Methods Eng. 83, 91–128 (2010)

    MATH  Google Scholar 

  35. Woernle, C.: Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper. Springer, Berlin (2011)

    Google Scholar 

  36. Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wohlmuth, B.I.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  38. Wohlmuth, B.I., Krause, R.H.: Monotone methods on non-matching grids for nonlinear contact problems. SIAM J. Sci. Comput. 25, 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  40. Zachmann, G.: Virtual reality in assembly simulation—collision detection, simulation algorithms, and interaction techniques. Ph.D. thesis, Technische Universität Darmstadt (2000)

    Google Scholar 

  41. Zierath, J.: Modelling of Three-Dimensional Contacts by Coupled Multibody- and Boundary-Element-Systems. Verlag Dr. Hut, München (2011)

    Google Scholar 

  42. Zierath, J., Woernle, C.: Elastic contact analyses with hybrid boundary element/multibody systems. In: Mikkola, A. (ed.) Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, pp. 327–336 (2010)

    Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Klaus Schittkowski from the University of Bayreuth for providing the source code of quadratic programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Zierath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zierath, J., Woernle, C. (2013). Contact Modelling in Multibody Systems by Means of a Boundary Element Co-simulation and a Dirichlet-to-Neumann Algorithm. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics