Skip to main content

A Review on CAD Tools for Burn Diagnosis

  • Chapter

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 6))

Abstract

A correct first treatment is essential for a favorable evolution of a burn injury. To know the depth of the burn is necessary to develop an appropriate course of treatment: correct visual assessment of burn depth relies highly on specialized dermatological expertise. The cost of maintaining a burn treatment unit is high, therefore it would be desirable to have an automatic system to give a first assessment at primary health-care centers, where there is a lack of specialists. The aim of the system is to separate burn wounds from healthy skin, and to distinguish among different types of burn depth. Digital color photographs are used as inputs to the system. Firstly, some topics related to image acquisition will be addressed. A method to normalize colors when photographs have been acquired with different cameras and/or illuminant conditions is described. Secondly, a comparative of several color segmentation algorithms will be presented. Finally, to estimate the burn depth a classification method, that take into account different color-texture features extracted from the burn images, will be described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The 250 49×49 pixel images were small images showing each one only one burn appearance (no healthy skin or background). Each 49×49 pixel image was validated by two physicians as belonging to a particular depth.

References

  1. Acha B (2002) Segmentación y clasificación de imágenes en color. Aplicación al diagnóstico de quemaduras. PhD Thesis. Spain: University of Seville

    Google Scholar 

  2. Acha B, Serrano C, Palencia S, Murillo JJ (2004) Classification of burn wounds using support vector machines. Proc SPIE Int Soc Opt Eng 5370:1018–1025

    Google Scholar 

  3. Acha B, Serrano C, Acha JI, Roa LM (2005) Segmentation and classification of burn images by color and texture information. J Biomed Opt 10(3):1–11

    Article  Google Scholar 

  4. Afromowitz MA, Van Liew GS, Heimbach DM (1997) Clinical evaluation of burn injuries using an optical reflectance technique. IEEE Trans Biomed Eng 34:114–127

    Article  Google Scholar 

  5. Afromowitz MA, Callis JB, Heimbach DM, DeSoto LA, Norton MK (1988) Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth. IEEE Trans Biomed Eng 35:842–850

    Article  Google Scholar 

  6. Alonso Betanzos A, Arcay Varela B, Castro Martinez A (2000) Analysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images. Image Vis Comput 18(13):1045–1054

    Article  Google Scholar 

  7. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:2

    Article  Google Scholar 

  8. Carpenter GA, Grossberg S, Markuzon S, Reynolds JH (1992) Fuzzy-ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 5:698–713

    Article  Google Scholar 

  9. Castro A, Bóveda C, Arcay B (2006) Analysis of fuzzy clustering algorithms for the segmentation of burn wounds photographs. Lect Notes Comput Sci 4142:491–501

    Article  Google Scholar 

  10. Clarke JA (1992) A colour atlas of burn injuries. Chapman & Hall Medical, London

    Google Scholar 

  11. Cole RP, Jones SG, Shakespeare PG (1990) Thermographic assessment of hand burns. Burns 16(1):60–63

    Article  Google Scholar 

  12. Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51(13):R5–R27

    Article  Google Scholar 

  13. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4–5):198–211

    Article  Google Scholar 

  14. Donohoe GW, Nemeth S, Soliz P (1998) ART-based image analysis for pigmented lesions of the skin. In: 11th IEEE symposium on computer-based medical systems, pp 293–298

    Google Scholar 

  15. Fondón I, Acha B, Serrano C, Sosa M (2006) New characteristics for the classification of burns: experimental study. Lect Notes Comput Sci 4142:502–512

    Article  Google Scholar 

  16. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Morgan Kaufmann, San Diego

    MATH  Google Scholar 

  17. Ganster H, Pinz A, Röhrer R, Wilding E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 3:233–239

    Article  Google Scholar 

  18. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 11(7):773–780

    Article  Google Scholar 

  19. Huang SY, Macpherson E, Zhang YT (2007) A feasibility study of burn wound depth assessment using terahertz pulsed imaging. In: Proceedings of the 4th IEEE-EMBS international summer school and symposium on medical devices and biosensors, ISSS-MDBS 2007, pp 132–135

    Chapter  Google Scholar 

  20. Lim YW, Lee SU (1990) On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognit 23(9):935–952

    Article  Google Scholar 

  21. Lucchese L, Mitra SK (2001) Color segmentation based on separate anisotropic diffusion of chromatic and achromatic channels. IEEE Proc Vis Image Signal Process 148(3):141–150

    Article  Google Scholar 

  22. McLaren K (1976) The development of the CIE 1976 (l*a*b*) uniform colourspace and colour-difference formula. J Soc Dyers Colour 92:338–341

    Article  Google Scholar 

  23. Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA (2011) Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns 37(2):249–256

    Article  Google Scholar 

  24. Niazi ZBM, Essex TJH, Papini R, Scott D, McLean NR, Black JM (1993) New laser Doppler scanner, a valuable adjunct in burn depth assessment. Burns 19(6):485–489

    Article  Google Scholar 

  25. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  26. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  27. Pierce MC, Sheridan RL, Park BH, Cense B, De Boer JF (2003) Burn depth determination in human skin using polarization-sensitive optical coherence tomography. Proc SPIE Int Soc Opt Eng 4956:263–270

    Google Scholar 

  28. Plataniotis KN, Venetsanopoulos AN (2000) Color image processing and applications. Springer, Berlin

    Google Scholar 

  29. Rangayyan RM (2005) Biomedical image analysis. CRC, Boca Raton

    Google Scholar 

  30. Rangayyan RM, Acha B, Serrano C (2011) Color image processing with biomedical applications. SPIE press monograph, vol PM206

    Book  Google Scholar 

  31. Renkielska A, Nowakowski A, Kaczmarek M, Ruminski J (2006) Burn depths evaluation based on active dynamic IR thermal imaging-A preliminary study. Burns 32(7):867–875

    Article  Google Scholar 

  32. Roa L, Gómez-Cía T, Acha B, Serrano C (1999) Digital imaging in remote diagnosis of burns. Burns 25(7):617–623

    Article  Google Scholar 

  33. Romero-Méndez R, Jiménez-Lozano JN, Sen M, Javier González F (2009) Analytical solution of the Pennes equation for burn-depth determination from infrared thermographs. Math Med Biol 27(1):21–38

    Article  Google Scholar 

  34. Ruminski J, Kaczmarek M, Renkielska A, Nowakowski A (2007) Thermal parametric imaging in the evaluation of skin burn depth. IEEE Trans Biomed Eng 54(2):303–312. Art. no. 14

    Article  Google Scholar 

  35. Sáez A, Acha B, Serrano C (2009) Colorimetric calibration of images captured under unknown illuminants. In: Proceedings of the 11th congress of the international colour association (Aic), Sidney, Australia

    Google Scholar 

  36. Serrano C, Roa L, Acha B (1998) Evaluation of a telemedicine platform in a burn unit. In: Proceedings of the IEEE international conference on information technology applications in biomedicine, Washington, DC, pp 121–126

    Google Scholar 

  37. Serrano C, Acha B, Gómez-Cía T, Acha JI, Roa LM (2005) A computer assisted diagnosis tool for the classification of burns by depth of injury. Burns 31(3):275–281

    Article  Google Scholar 

  38. Serrano C, Acha B, Sangwine SJ (2005) Colorimetric calibration of images of human skin captured under hospital conditions. In: Proceedings of the 10th congress of the international colour association AIC, Granada, Spain, vol 1, pp 773–776

    Google Scholar 

  39. Tannenbaum B (2007) Webinar color image processing with MATLAB. June 28th

    Google Scholar 

  40. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  41. Wu Z, Xie W, Yu J (2003) Fuzzy C-means clustering algorithm based on kernel method. In: Computational intelligence and multimedia applications, ICCIMA, pp 49–54

    Google Scholar 

  42. Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recognit 29(8):1335–1346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sáez, A., Serrano, C., Acha, B. (2013). A Review on CAD Tools for Burn Diagnosis. In: Celebi, M., Schaefer, G. (eds) Color Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5389-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5389-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5388-4

  • Online ISBN: 978-94-007-5389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics