Skip to main content

Connections and Metrics

  • Chapter
Gravity, a Geometrical Course
  • 2980 Accesses

Abstract

This chapter introduces the theory of connections and metrics. It includes an extensive historical account of the development of mathematical and physical ideas which eventually lead to both general relativity and modern gauge theories of the non-gravitational interactions. The notion of geodesics is introduced and exemplified with the detailed presentation of a pair of examples in two dimensions, one with Lorentzian signature, the other with Euclidian signature.

My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful…

Hermann Weyl

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The translation of Riemann’s essay from German into English was done by William Clifford.

  2. 2.

    In the original German text of Riemann these were named mehrfach ausgedehnter Grossen. In modern scientific German the notion of manifolds is referred to as mannigfaltigkeiten.

  3. 3.

    Einfachsten Thatsachen in the original German text.

  4. 4.

    He gave to science Absolute Differential Calculus, essential instrument of the Theory of General Relativity, a new vision of the Universe.

  5. 5.

    The very first embryonal idea of the Ricci tensor actually appeared as early as 1892 in another publication of its inventor [7].

  6. 6.

    Ludwig Maurer (1859–1927) obtained his Doctorate in 1887 from the University of Strasbourg (at the time under German rule after the defeat of France in the 1870 war) and became professor of Mathematics at the University of Tübingen. His doctoral dissertation Zur Theorie der linearen Substitutionen [20] happens to contain a germ of the idea of Maurer-Cartan forms developed by Cartan in 1904.

  7. 7.

    About the functions which help determining the attraction of general spheroids. Programme for a thesis about some properties of curves with a double curvature.

  8. 8.

    We shall discuss this notion at length in Volume 2 in the chapters dealing with symmetries of black-holes and cosmological solutions.

References

  1. Gauss, K.F.: Disquisitiones generales circa superficies curvas. Göttingen, Dieterich (1828)

    Google Scholar 

  2. Riemann, G.F.B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. In: Gesammelte Mathematische Werke (1866)

    Google Scholar 

  3. Christoffel, E.B.: Über die Transformation der homogenen Differentialausdrücke zweiten Grades. J. Reine Angew. Math. 70, 46–70 (1869)

    Article  MATH  Google Scholar 

  4. Levi Civita, T., Ricci, G.: Méthodes de calcul differential absolu et leurs applications. Math. Ann. B 54, 125–201 (1900)

    Article  MathSciNet  Google Scholar 

  5. Klein, F.: Vergleichende Betrachtungen ber neuere geometrische Forschungen. Math. Ann. 43, 63–100 (1893). Also: Gesammelte Abh. Vol. 1, pp. 460–497. Springer (1921)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ricci, G., Atti R. Inst. Venelo 53(2), 1233–1239 (1903–1904)

    Google Scholar 

  7. Ricci, G.: Résumé de quelques travaux sur le systémes variable de fonctions associées a une forme diffé rentielle quadratique. Bull. Sci. Math. (1892)

    Google Scholar 

  8. Bianchi, L.: Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti. (On the spaces of three dimensions that admit a continuous group of movements. Soc. Ital. Sci. Mem. di Mat. 11, 267 (1898)

    Google Scholar 

  9. Bianchi Rend, L.: Accad. Naz. Lincei 11, 3 (1902)

    Google Scholar 

  10. Cartan, E.: Sur l’integration des systémes d’équations aux differentielles totales. Ann. Éc. Norm. Instit. 18, 241–311 (1901)

    MathSciNet  MATH  Google Scholar 

  11. Frenet, J.F.: Sur quelques proprétés des courbes à double courbure. J. Math. Pures Appl. (1852)

    Google Scholar 

  12. Serret, J.A.: Sur quelques formules relatives à la théorie des courbes à double courbure. J. De Math. 16 (1851)

    Google Scholar 

  13. Killing, W.K.J.: Die Zusammensetzung der stetigen/endlichen Transformationsgruppen. Math. Ann. 31(2), 252–290 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  14. Killing, W.K.J.: Die Zusammensetzung der stetigen/endlichen Transformationsgruppen. Math. Ann. 33(1), 1–48 (1888)

    Article  MathSciNet  Google Scholar 

  15. Killing, W.K.J.: Die Zusammensetzung der stetigen/endlichen Transformationsgruppen. Math. Ann. 34(1), 57–122 (1889)

    Article  MathSciNet  MATH  Google Scholar 

  16. Killing, W.K.J.: Die Zusammensetzung der stetigen/endlichen Transformationsgruppen. Math. Ann. 36(2), 161–189 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cartan, E.: Über die einfachen Transformationgruppen, pp. 395–420. Leipz. Ber. (1893)

    Google Scholar 

  18. Cartan, E.: Sur la structure des groupes de transformations finis et continus. Thése, Paris, Nony (1894)

    Google Scholar 

  19. Cartan, E.: Sur la structure des groupes infinis de transformations. Ann. Sci. de l’ENS 21, 153–206 (1904)

    MathSciNet  MATH  Google Scholar 

  20. Maurer, L.W.: Ueber continuirliche Transformationsgruppen. Math. Ann. 39, 409–440 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cartan, E.: Sur les equations de la gravitation d’Einstein. J. Math. Pures Appl. 9(1), 93–161 (1922)

    Google Scholar 

  22. Dirac, P.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  23. Sylvester, J.J.: A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Philos. Mag. IV, 138–142 (1852). http://www.maths.ed.ac.uk/~aar/sylv/inertia.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frè, P.G. (2013). Connections and Metrics. In: Gravity, a Geometrical Course. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5361-7_3

Download citation

Publish with us

Policies and ethics