Perforation of Composite Laminate Subjected to Dynamic Loads

  • Shirley Kalamis García-Castillo
  • Sonia Sánchez-Sáez
  • Carlos Santiuste
  • Carlos Navarro
  • Enrique Barbero
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 192)


This chapter focuses on the modeling of plain woven GFRP laminates under high-velocity impact. A brief review of the different approaches available in scientific literature to model the behavior of composite laminates subjected to high-velocity impact of low-mass projectiles is presented, and a new analytical model is proposed. The present model is able to predict the energy absorbed by the laminate during the perforation process including the main energy-absorption mechanisms for thin laminates: kinetic energy transferred to the laminate, fiber failure, elastic deformation, matrix cracking, and delamination.

The model is validated through comparison with experimental data obtained in high-velocity impact tests on plain woven laminates made from glass fiber and polyester resin, using different plate thicknesses. Moreover, a numerical model based on the Finite Element Method (FEM) was developed to verify the hypothesis of the analytical model. The model showed good agreement with experimental results for a laminate thickness between 3 and 6 mm. However, when the thickness reached 12 mm the model overestimated the residual velocity of the projectile.

The validated analytical model is used to analyze the contribution of the main energy-absorption mechanisms. For impact velocities lower than or equal to the ballistic limit, the main energy-absorption mechanisms are fiber elastic deformation and fiber failure, thus the impact behavior of the laminate is dominated by the stiffness and the strength of the plate. Meanwhile, for higher impact velocities, laminate acceleration is the main energy-absorption mechanism, and the behavior of the laminate is dominated by its density.


Elastic Deformation Impact Velocity Damage Area Tensile Failure Residual Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to the Spanish Comisión Interministerial de Ciencia y Tecnología (Projects TRA2007-66555) and Consejería de Educación de la Comunidad de Madrid (Projects GR/MAT/0498/2004 and IME-05-026) for the financial support of this work.


  1. 1.
    Koissin V, Skvortsov V, Krahmalev S, Shilpsha A (2004) The elastic response of sandwich structures to local loading. Compos Struct 63(3–4):375–385CrossRefGoogle Scholar
  2. 2.
    Rizov V, Mladensky A (2008) Mechanical behaviour of composite sandwich structures subjected to low velocity impact – experimental testing and finite element modeling. Polym Polym Compos 16(4):233–240Google Scholar
  3. 3.
    Cantwell WJ, Morton J (1990) Impact perforation of carbon fiber reinforced plastic. Compos Sci Technol 38:119–141CrossRefGoogle Scholar
  4. 4.
    Abrate S (1998) Impact on composite structures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Abrate S (1994) Impact on laminated composites: recent advances. Appl Mech Rev 47(11):517–544CrossRefGoogle Scholar
  6. 6.
    Kasano H, Abe K (1997) Perforation characteristics prediction of multi-layered composite plates subjected to high velocity impact. In: Proceedings of the ICCM-11, vol 2, pp 522–531Google Scholar
  7. 7.
    Ben-Dor G, Dubinsky A, Elperin T (2005) Ballistic impact: recent Advances in analytical modeling of plate perforation dynamic-a review. Appl Mech Rev 58:355–369CrossRefGoogle Scholar
  8. 8.
    Menna C, Asprone D, Caprino G, Lopresto V, Prota A (2011) Numerical simulation of impact tests on GRFP composite laminates. Int J Impact Eng 38:677–685CrossRefGoogle Scholar
  9. 9.
    Gama BA, Gillespie JW (2011) Finite element modeling of impact, damage evolution and penetration of thick-section composites. Int J Impact Eng 38:181–197CrossRefGoogle Scholar
  10. 10.
    Navarro C (1997) Impact response and dynamic failure of composites and laminate materials. Key Eng Mat 141–143:383–402Google Scholar
  11. 11.
    Sjöblom PO, Hartness JT, Cordell TM (1988) On low-velocity impact testing of composite materials. J Compos Mat 22:30–52CrossRefGoogle Scholar
  12. 12.
    Robinson P, Davies GAO (1992) Impactor mass and specimen geometry effects in low velocity impact of laminated composites. Int J Impact Eng 12(2):189–207CrossRefGoogle Scholar
  13. 13.
    Naik NK, Shrirao P (2004) Composite structures under ballistic impact. Compos Struct 66:579–590CrossRefGoogle Scholar
  14. 14.
    Buitrago BL, García-Castillo SK, Barbero E (2010) Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact. Mater Lett 64(9):1052–1054CrossRefGoogle Scholar
  15. 15.
    Zukas JA, Nicholas T, Swift H, Greszczuk LB, Curran DR (1992) Impact dynamic. Krieger Publishing Company, MalabarGoogle Scholar
  16. 16.
    MIL-STD-662F Standard. V50 Ballistic test for armor. Department of Defense Test Method StandardGoogle Scholar
  17. 17.
    Ulven C, Vahadilla UK, Hosur MV (2003) Effect of projectile shape during ballistic perforation of VARTM carbon/epoxi composite panels. Compos Struct 61:143–150CrossRefGoogle Scholar
  18. 18.
    Fujii K, Aoki M, Kiuchi N, Yasuda E, Tanabe Y (2002) Impact perforation behavior of CFRPs using high-velocity steel sphere. Int J Impact Eng 27:497–508CrossRefGoogle Scholar
  19. 19.
    García-Castillo SK, Sánchez-Sáez S, Barbero E (2012) Nondimensional analysis of ballistic impact on woven laminate plates. Int J Impact Eng 29:8–15CrossRefGoogle Scholar
  20. 20.
    Kim H, Welch DA, Kedward KT (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part A Appl S 34:25–41CrossRefGoogle Scholar
  21. 21.
    Johnson AF, Holzapfel M (2006) Influence of delamination on impact damage in composite structures. Compos Sci Technol 66:807–815CrossRefGoogle Scholar
  22. 22.
    García-Castillo SK, Sánchez-Sáez S, Barbero E, Navarro C (2006) Response of pre-loaded laminate composite plates subject to high velocity impact. J Phys IV 134:1257–1263Google Scholar
  23. 23.
    Deka LJ, Bartus SD, Vaidya UK (2008) Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact. J Mater Sci 43:4399–4410CrossRefGoogle Scholar
  24. 24.
    Tan VBC, Ching TW (2006) Computational simulation of fabric armor subjected to ballistic impacts. Int J Impact Eng 32:1737–1751CrossRefGoogle Scholar
  25. 25.
    He T, Wen HM, Qin Y (2008) Finite element analysis to predict perforation and perforation of thick FRP laminates struck by projectiles. Int J Impact Eng 35:27–36CrossRefGoogle Scholar
  26. 26.
    Buitrago BL, Santiuste C, Sanchez-Saez S, Barbero E, Navarro C (2010) Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Compos Struct 92:2090–2096CrossRefGoogle Scholar
  27. 27.
    Grujicic M, He T, Marvi H, Cheeseman BA, Yen CF (2010) A comparative investigation of the use of laminate-level meso-scale and fracture-mechanics-enriched meso-scale composite-material models in ballistic-resistance analyses. J Mater Sci 45(12):3136–3150CrossRefGoogle Scholar
  28. 28.
    Taylor WJ, Vinson JR (1990) Modeling ballistic into flexible materials. AIAA J 28:2098–2103CrossRefGoogle Scholar
  29. 29.
    Zhu G, Goldsmith W, Dharan CKH (1992) Penetration of laminated Kevlar by projectiles-II. Analytical model. Int J Solid Struct 29:421–436CrossRefGoogle Scholar
  30. 30.
    Vinson JR, Walter JM (1997) Ballistic impact of thin-walled composite structures. AIAA J 35:875–878CrossRefGoogle Scholar
  31. 31.
    Navarro C (1998) Simplified modelling of the ballistic behavior of fabrics and fiber-reinforced polymeric matrix composites. Key Eng Mat 141(1):383–399CrossRefGoogle Scholar
  32. 32.
    Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (2000) Modelling of the energy absorption by polymer composites upon ballistic impact. Compos Sci Technol 60:2631–2640CrossRefGoogle Scholar
  33. 33.
    Wen HM (2000) Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Compos Struct 49(3):321–329CrossRefGoogle Scholar
  34. 34.
    Gu B (2003) Analytical modelling for the ballistic perforation of planar plain-woven fabric target by projectile. Compos Part B Eng 34:361–371CrossRefGoogle Scholar
  35. 35.
    Naik NK, Shrirao P, Reddy BCK (2005) Ballistic impact behavior of woven fabric composite: parametric studies. Mater Sci Eng A Struct 472:104–116CrossRefGoogle Scholar
  36. 36.
    Naik NK, Doshi AV (2005) Ballistic impact behavior of thick composite: analytical formulation. AIAA J 43:1525–1536CrossRefGoogle Scholar
  37. 37.
    Naik NK, Shrirao P, Reddy BCK (2006) Ballistic impact behavior of woven fabric composites: formulation. Int J Impact Eng 32:1521–1552CrossRefGoogle Scholar
  38. 38.
    Lopez-Puente J, Zaera R, Navarro C (2007) An analytical model for high velocity impacts on thin CFRPs woven laminated plates. Int J Solid Struct 44:2837–2851zbMATHCrossRefGoogle Scholar
  39. 39.
    García-Castillo SK, Sánchez-Sáez S, López-Puente J, Barbero E, Navarro C (2009) Impact behavior of preloaded glass/polyester woven plates. Compos Sci Technol 69:711–717CrossRefGoogle Scholar
  40. 40.
    Wen HM (2001) Penetration and perforation of thick FRP laminates. Compos Sci Technol 61:1163–1172CrossRefGoogle Scholar
  41. 41.
    Phoenix SL, Porwal PK (2003) A new membrane model for ballistic impact response and V50 performance of multi-ply fibrous systems. Int J Solid Struct 40:6723–6765zbMATHCrossRefGoogle Scholar
  42. 42.
    Mamivand M, Liaghat GH (2010) A model for ballistic impact on multi-layer fabric targets. Int J Impact Eng 37:806–812CrossRefGoogle Scholar
  43. 43.
    Grujicic M, Bell WC, Arakere G, He T, Xie X, Cheeseman B (2010) A development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems. J Mater Eng Perform 19(1):22–39CrossRefGoogle Scholar
  44. 44.
    He T, Wen HM, Qin Y (2007) Penetration and perforation of FRP laminates struck transversely by conical-nosed projectiles. Compos Struct 81(2):243–252CrossRefGoogle Scholar
  45. 45.
    García-Castillo SK (2007) Análisis de laminados de materiales compuestos con precarga en su plano y sometidos a impacto. PhD thesis, University Carlos III of MadridGoogle Scholar
  46. 46.
    García-Castillo SK, Buitrago BL, Barbero E (2011) Behavior of sandwich structures and spaced plates subjected to high-velocity impacts. Polym Compos 32(2):290–296CrossRefGoogle Scholar
  47. 47.
    Nahas NM (1986) Survey of failure and post-failure theories of laminated fiber-reinforced composites. J Compos Technol Res 8:138–153CrossRefGoogle Scholar
  48. 48.
    Paris F (2001) A study of failure criteria of fibrous composite materials. Technical report: NASA-cr210661Google Scholar
  49. 49.
    Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modeling incorporating failure. Compos Struct 86:194–210CrossRefGoogle Scholar
  50. 50.
    Soden PD, Kaddour AS, Hinton MJ (2004) Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos Sci Technol 64(3–4):589–604CrossRefGoogle Scholar
  51. 51.
    Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRefGoogle Scholar
  52. 52.
    Hou JP, Petrinic N, Ruiz C, Hallett SR (2000) Prediction of impact damage in composite plates. Compos Sci Tech 60(2):273–280CrossRefGoogle Scholar
  53. 53.
    Chang F, Chang KA (1987) A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834–855CrossRefGoogle Scholar
  54. 54.
    Zangani D, Robinson M, Gibson AG (2008) Energy absorption characteristics of web-core sandwich composite panels subjected to drop-weight impact. Appl Compos Mater 15:139–156CrossRefGoogle Scholar
  55. 55.
    Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68:1348–1356CrossRefGoogle Scholar
  56. 56.
    Budiansky B, Fleck NA, Amaxigo JC (1998) On kink-band propagation in fiber composites. J Mech Phys Solid 46:1637–1653zbMATHCrossRefGoogle Scholar
  57. 57.
    Davila CG, Camanho PP (2003) Failure criteria for FRP laminates in plane stress. NASA/TM-2003-212663Google Scholar
  58. 58.
    Davila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39:323–343CrossRefGoogle Scholar
  59. 59.
    Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045–1067CrossRefGoogle Scholar
  60. 60.
    Christensen RM (1997) Stress based yield/fracture criteria for fiber composites. Int J Solid Struct 34:529–543zbMATHCrossRefGoogle Scholar
  61. 61.
    Kim RY, Soni SR (1986) Failure of composite laminates due to combined interlaminar normal and shear stresses. Composites ’86: recent advances in Japan and the United States, pp 341–350Google Scholar
  62. 62.
    Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22(12):1141–1155CrossRefGoogle Scholar
  63. 63.
    Tong L (1997) An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints. J Reinforce Plastic Composites 16:698–713Google Scholar
  64. 64.
    Lorriot TH, Marion G, Harry R, Wargnier H (2003) Onset of free-edge delamination in composite laminates under tensile loading. Compos Part B: Eng 34:459–471CrossRefGoogle Scholar
  65. 65.
    Mahanta BB, Chakraborty D, Dutta A (2004) Accurate prediction of delamination in FRP composite laminates resulting from transverse impact. Compos Sci Technol 64:2341–2351CrossRefGoogle Scholar
  66. 66.
    Goyal VK, Johnson ER, Dávila C (2004) Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos Struct 65:289–305CrossRefGoogle Scholar
  67. 67.
    Zhang Z, Taheri F (2004) Dynamic damage initiation of composite beams subjected to axial impact. Compos Sci Technol 64:719–728CrossRefGoogle Scholar
  68. 68.
    Maimi P, Camanho PP, Mayugo JA, Davila CG (2007) A continuum damage model for composite laminates: part I – constitutive model. Mech Mater 39(10):897–808CrossRefGoogle Scholar
  69. 69.
    Sleight DW (1999) Progressive failure analysis methodology for laminated composite structures. NASA/TP-1999-209107Google Scholar
  70. 70.
    Chiu KD (1969) Ultimate Strength of laminated composites. J Compos Mater 3:578–582MathSciNetCrossRefGoogle Scholar
  71. 71.
    Luo RK, Green ER, Morrison CJ (1999) Impact damage analysis of composite plates. Int J Impact Eng 22:435–447CrossRefGoogle Scholar
  72. 72.
    Camanho PP, Matthews FL (1999) A progressive damage model for mechanically fastened joints in composite laminates. J Compos Mater 33:2248–2280CrossRefGoogle Scholar
  73. 73.
    Papanikos P, Tserpes KI, Pantelakis SP (2003) Modelling of fatigue damage progression and life of CFRP laminates. Fatigue Fracture Eng Mater Struct 26:37–47CrossRefGoogle Scholar
  74. 74.
    Hahn HT, Tsai SW (1974) On the behaviour of composite laminates after initial failures. J Compos Mater 8:288–305CrossRefGoogle Scholar
  75. 75.
    Ghosh A, Sinha PK (2004) Dynamic and impact response of damaged laminated composite plates. Aircr Eng Aerosp Technol 76:29–23CrossRefGoogle Scholar
  76. 76.
    Balzani C, Wagner W (2008) An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng Fract Mech 75:2597–2615CrossRefGoogle Scholar
  77. 77.
    Linde P, De Boer H (2006) Modelling of inter-rivet buckling of hybrid composites. Compos Struct 73:221–228CrossRefGoogle Scholar
  78. 78.
    Sheikh AH, Bull PH, Kepler JA (2009) Behavior of multiple composite plates subjected to ballistic impact. Compos Sci Technol 69:704–710CrossRefGoogle Scholar
  79. 79.
    Kachanov LM (1958) Time of the rupture process under creep conditions. Izvetia Akademii Naukk SSSR. Otdelenie Tekhnischeskich NaukGoogle Scholar
  80. 80.
    Rabotnov YN (1968) Creep rupture. In: Proceeding of XII international congress on applied mechanic. Springer, StanfordGoogle Scholar
  81. 81.
    Talreja R (1987) Modeling of damage development in composite using internal variable concepts. Damage mechanics in composites, ASME Winter annual meeting, BostonGoogle Scholar
  82. 82.
    Ladeveze P, Ledantec E (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267CrossRefGoogle Scholar
  83. 83.
    Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber composites. Mech Mater 20:125–152CrossRefGoogle Scholar
  84. 84.
    Barbero EJ, Lonetti P, Sikkil KK (2006) Finite element continuum damage modeling of plain weave reinforced composites. Compos Part B Eng 37:137–147CrossRefGoogle Scholar
  85. 85.
    Santiuste C, Sánchez-Sáez S, Barbero E (2010) A comparison of progressive-failure criteria in the prediction of the dynamic. Compos Struct 92(10):2406–2414CrossRefGoogle Scholar
  86. 86.
    Lopez-Puente J, Zaera R, Navarro C (2008) Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos Part A Appl S 39:374–387CrossRefGoogle Scholar
  87. 87.
    Iváñez I, Santiuste C, Sánchez-Sáez S (2010) FEM analysis of dynamic flexural behavior of composite sandwich beams with foam core. Compos Struct 92(9):2285–2291CrossRefGoogle Scholar
  88. 88.
    Ivañez I, Santiuste C, Sánchez-Sáez S, Barbero E (2011) Numerical modelling of foam-cored sandwich plates under high velocity impact. Compos Struct 93:2392–2399CrossRefGoogle Scholar
  89. 89.
    Smith JC, McCrackin FL, Schiefer HF (1958) Stress-strain relationships in yarns subjected to rapis impact loading: 5 Wave propagation in long tensile yarns impacted transversally. J Res Nat Bur Stand 60:517–534zbMATHCrossRefGoogle Scholar
  90. 90.
    Roylance D (1980) Stress wave propagation in fibres: effect of crossovers. Fibre Sci Technol 13(5):385–395CrossRefGoogle Scholar
  91. 91.
    García-Castillo SK, Sánchez-Sáez S, Barbero E (2011) Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact. Mech Res Commun 38(5):404–407CrossRefGoogle Scholar
  92. 92.
    Zee RH, Wang CJ, Mount A, Jang BZ, Hsieh CY (1991) Ballistic response of polymer composites. Polym Compos 12:196–202CrossRefGoogle Scholar
  93. 93.
    Varas D, Zaera R, López-Puente J (2011) Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact. Compos Struct 93(10):2598–2609CrossRefGoogle Scholar
  94. 94.
    Kasano H (1999) Recent advances in high-velocity impact perforation of fiber composite laminates. JSME Int J A 42(2):147–157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Shirley Kalamis García-Castillo
    • 1
  • Sonia Sánchez-Sáez
    • 1
  • Carlos Santiuste
    • 1
  • Carlos Navarro
    • 1
  • Enrique Barbero
    • 1
  1. 1.Department of Continuum Mechanics and Structural AnalysisUniversity Carlos III of MadridLeganésSpain

Personalised recommendations