Skip to main content

Perforation of Composite Laminate Subjected to Dynamic Loads

  • Chapter
  • First Online:
Dynamic Failure of Composite and Sandwich Structures

Abstract

This chapter focuses on the modeling of plain woven GFRP laminates under high-velocity impact. A brief review of the different approaches available in scientific literature to model the behavior of composite laminates subjected to high-velocity impact of low-mass projectiles is presented, and a new analytical model is proposed. The present model is able to predict the energy absorbed by the laminate during the perforation process including the main energy-absorption mechanisms for thin laminates: kinetic energy transferred to the laminate, fiber failure, elastic deformation, matrix cracking, and delamination.

The model is validated through comparison with experimental data obtained in high-velocity impact tests on plain woven laminates made from glass fiber and polyester resin, using different plate thicknesses. Moreover, a numerical model based on the Finite Element Method (FEM) was developed to verify the hypothesis of the analytical model. The model showed good agreement with experimental results for a laminate thickness between 3 and 6 mm. However, when the thickness reached 12 mm the model overestimated the residual velocity of the projectile.

The validated analytical model is used to analyze the contribution of the main energy-absorption mechanisms. For impact velocities lower than or equal to the ballistic limit, the main energy-absorption mechanisms are fiber elastic deformation and fiber failure, thus the impact behavior of the laminate is dominated by the stiffness and the strength of the plate. Meanwhile, for higher impact velocities, laminate acceleration is the main energy-absorption mechanism, and the behavior of the laminate is dominated by its density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koissin V, Skvortsov V, Krahmalev S, Shilpsha A (2004) The elastic response of sandwich structures to local loading. Compos Struct 63(3–4):375–385

    Article  Google Scholar 

  2. Rizov V, Mladensky A (2008) Mechanical behaviour of composite sandwich structures subjected to low velocity impact – experimental testing and finite element modeling. Polym Polym Compos 16(4):233–240

    Google Scholar 

  3. Cantwell WJ, Morton J (1990) Impact perforation of carbon fiber reinforced plastic. Compos Sci Technol 38:119–141

    Article  Google Scholar 

  4. Abrate S (1998) Impact on composite structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Abrate S (1994) Impact on laminated composites: recent advances. Appl Mech Rev 47(11):517–544

    Article  Google Scholar 

  6. Kasano H, Abe K (1997) Perforation characteristics prediction of multi-layered composite plates subjected to high velocity impact. In: Proceedings of the ICCM-11, vol 2, pp 522–531

    Google Scholar 

  7. Ben-Dor G, Dubinsky A, Elperin T (2005) Ballistic impact: recent Advances in analytical modeling of plate perforation dynamic-a review. Appl Mech Rev 58:355–369

    Article  Google Scholar 

  8. Menna C, Asprone D, Caprino G, Lopresto V, Prota A (2011) Numerical simulation of impact tests on GRFP composite laminates. Int J Impact Eng 38:677–685

    Article  Google Scholar 

  9. Gama BA, Gillespie JW (2011) Finite element modeling of impact, damage evolution and penetration of thick-section composites. Int J Impact Eng 38:181–197

    Article  Google Scholar 

  10. Navarro C (1997) Impact response and dynamic failure of composites and laminate materials. Key Eng Mat 141–143:383–402

    Google Scholar 

  11. Sjöblom PO, Hartness JT, Cordell TM (1988) On low-velocity impact testing of composite materials. J Compos Mat 22:30–52

    Article  Google Scholar 

  12. Robinson P, Davies GAO (1992) Impactor mass and specimen geometry effects in low velocity impact of laminated composites. Int J Impact Eng 12(2):189–207

    Article  Google Scholar 

  13. Naik NK, Shrirao P (2004) Composite structures under ballistic impact. Compos Struct 66:579–590

    Article  Google Scholar 

  14. Buitrago BL, García-Castillo SK, Barbero E (2010) Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact. Mater Lett 64(9):1052–1054

    Article  Google Scholar 

  15. Zukas JA, Nicholas T, Swift H, Greszczuk LB, Curran DR (1992) Impact dynamic. Krieger Publishing Company, Malabar

    Google Scholar 

  16. MIL-STD-662F Standard. V50 Ballistic test for armor. Department of Defense Test Method Standard

    Google Scholar 

  17. Ulven C, Vahadilla UK, Hosur MV (2003) Effect of projectile shape during ballistic perforation of VARTM carbon/epoxi composite panels. Compos Struct 61:143–150

    Article  Google Scholar 

  18. Fujii K, Aoki M, Kiuchi N, Yasuda E, Tanabe Y (2002) Impact perforation behavior of CFRPs using high-velocity steel sphere. Int J Impact Eng 27:497–508

    Article  Google Scholar 

  19. García-Castillo SK, Sánchez-Sáez S, Barbero E (2012) Nondimensional analysis of ballistic impact on woven laminate plates. Int J Impact Eng 29:8–15

    Article  Google Scholar 

  20. Kim H, Welch DA, Kedward KT (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part A Appl S 34:25–41

    Article  Google Scholar 

  21. Johnson AF, Holzapfel M (2006) Influence of delamination on impact damage in composite structures. Compos Sci Technol 66:807–815

    Article  Google Scholar 

  22. García-Castillo SK, Sánchez-Sáez S, Barbero E, Navarro C (2006) Response of pre-loaded laminate composite plates subject to high velocity impact. J Phys IV 134:1257–1263

    Google Scholar 

  23. Deka LJ, Bartus SD, Vaidya UK (2008) Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact. J Mater Sci 43:4399–4410

    Article  Google Scholar 

  24. Tan VBC, Ching TW (2006) Computational simulation of fabric armor subjected to ballistic impacts. Int J Impact Eng 32:1737–1751

    Article  Google Scholar 

  25. He T, Wen HM, Qin Y (2008) Finite element analysis to predict perforation and perforation of thick FRP laminates struck by projectiles. Int J Impact Eng 35:27–36

    Article  Google Scholar 

  26. Buitrago BL, Santiuste C, Sanchez-Saez S, Barbero E, Navarro C (2010) Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Compos Struct 92:2090–2096

    Article  Google Scholar 

  27. Grujicic M, He T, Marvi H, Cheeseman BA, Yen CF (2010) A comparative investigation of the use of laminate-level meso-scale and fracture-mechanics-enriched meso-scale composite-material models in ballistic-resistance analyses. J Mater Sci 45(12):3136–3150

    Article  Google Scholar 

  28. Taylor WJ, Vinson JR (1990) Modeling ballistic into flexible materials. AIAA J 28:2098–2103

    Article  Google Scholar 

  29. Zhu G, Goldsmith W, Dharan CKH (1992) Penetration of laminated Kevlar by projectiles-II. Analytical model. Int J Solid Struct 29:421–436

    Article  Google Scholar 

  30. Vinson JR, Walter JM (1997) Ballistic impact of thin-walled composite structures. AIAA J 35:875–878

    Article  Google Scholar 

  31. Navarro C (1998) Simplified modelling of the ballistic behavior of fabrics and fiber-reinforced polymeric matrix composites. Key Eng Mat 141(1):383–399

    Article  Google Scholar 

  32. Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (2000) Modelling of the energy absorption by polymer composites upon ballistic impact. Compos Sci Technol 60:2631–2640

    Article  Google Scholar 

  33. Wen HM (2000) Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes. Compos Struct 49(3):321–329

    Article  Google Scholar 

  34. Gu B (2003) Analytical modelling for the ballistic perforation of planar plain-woven fabric target by projectile. Compos Part B Eng 34:361–371

    Article  Google Scholar 

  35. Naik NK, Shrirao P, Reddy BCK (2005) Ballistic impact behavior of woven fabric composite: parametric studies. Mater Sci Eng A Struct 472:104–116

    Article  Google Scholar 

  36. Naik NK, Doshi AV (2005) Ballistic impact behavior of thick composite: analytical formulation. AIAA J 43:1525–1536

    Article  Google Scholar 

  37. Naik NK, Shrirao P, Reddy BCK (2006) Ballistic impact behavior of woven fabric composites: formulation. Int J Impact Eng 32:1521–1552

    Article  Google Scholar 

  38. Lopez-Puente J, Zaera R, Navarro C (2007) An analytical model for high velocity impacts on thin CFRPs woven laminated plates. Int J Solid Struct 44:2837–2851

    Article  MATH  Google Scholar 

  39. García-Castillo SK, Sánchez-Sáez S, López-Puente J, Barbero E, Navarro C (2009) Impact behavior of preloaded glass/polyester woven plates. Compos Sci Technol 69:711–717

    Article  Google Scholar 

  40. Wen HM (2001) Penetration and perforation of thick FRP laminates. Compos Sci Technol 61:1163–1172

    Article  Google Scholar 

  41. Phoenix SL, Porwal PK (2003) A new membrane model for ballistic impact response and V50 performance of multi-ply fibrous systems. Int J Solid Struct 40:6723–6765

    Article  MATH  Google Scholar 

  42. Mamivand M, Liaghat GH (2010) A model for ballistic impact on multi-layer fabric targets. Int J Impact Eng 37:806–812

    Article  Google Scholar 

  43. Grujicic M, Bell WC, Arakere G, He T, Xie X, Cheeseman B (2010) A development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems. J Mater Eng Perform 19(1):22–39

    Article  Google Scholar 

  44. He T, Wen HM, Qin Y (2007) Penetration and perforation of FRP laminates struck transversely by conical-nosed projectiles. Compos Struct 81(2):243–252

    Article  Google Scholar 

  45. García-Castillo SK (2007) Análisis de laminados de materiales compuestos con precarga en su plano y sometidos a impacto. PhD thesis, University Carlos III of Madrid

    Google Scholar 

  46. García-Castillo SK, Buitrago BL, Barbero E (2011) Behavior of sandwich structures and spaced plates subjected to high-velocity impacts. Polym Compos 32(2):290–296

    Article  Google Scholar 

  47. Nahas NM (1986) Survey of failure and post-failure theories of laminated fiber-reinforced composites. J Compos Technol Res 8:138–153

    Article  Google Scholar 

  48. Paris F (2001) A study of failure criteria of fibrous composite materials. Technical report: NASA-cr210661

    Google Scholar 

  49. Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modeling incorporating failure. Compos Struct 86:194–210

    Article  Google Scholar 

  50. Soden PD, Kaddour AS, Hinton MJ (2004) Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos Sci Technol 64(3–4):589–604

    Article  Google Scholar 

  51. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  52. Hou JP, Petrinic N, Ruiz C, Hallett SR (2000) Prediction of impact damage in composite plates. Compos Sci Tech 60(2):273–280

    Article  Google Scholar 

  53. Chang F, Chang KA (1987) A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834–855

    Article  Google Scholar 

  54. Zangani D, Robinson M, Gibson AG (2008) Energy absorption characteristics of web-core sandwich composite panels subjected to drop-weight impact. Appl Compos Mater 15:139–156

    Article  Google Scholar 

  55. Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68:1348–1356

    Article  Google Scholar 

  56. Budiansky B, Fleck NA, Amaxigo JC (1998) On kink-band propagation in fiber composites. J Mech Phys Solid 46:1637–1653

    Article  MATH  Google Scholar 

  57. Davila CG, Camanho PP (2003) Failure criteria for FRP laminates in plane stress. NASA/TM-2003-212663

    Google Scholar 

  58. Davila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39:323–343

    Article  Google Scholar 

  59. Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045–1067

    Article  Google Scholar 

  60. Christensen RM (1997) Stress based yield/fracture criteria for fiber composites. Int J Solid Struct 34:529–543

    Article  MATH  Google Scholar 

  61. Kim RY, Soni SR (1986) Failure of composite laminates due to combined interlaminar normal and shear stresses. Composites ’86: recent advances in Japan and the United States, pp 341–350

    Google Scholar 

  62. Brewer JC, Lagace PA (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22(12):1141–1155

    Article  Google Scholar 

  63. Tong L (1997) An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints. J Reinforce Plastic Composites 16:698–713

    Google Scholar 

  64. Lorriot TH, Marion G, Harry R, Wargnier H (2003) Onset of free-edge delamination in composite laminates under tensile loading. Compos Part B: Eng 34:459–471

    Article  Google Scholar 

  65. Mahanta BB, Chakraborty D, Dutta A (2004) Accurate prediction of delamination in FRP composite laminates resulting from transverse impact. Compos Sci Technol 64:2341–2351

    Article  Google Scholar 

  66. Goyal VK, Johnson ER, Dávila C (2004) Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Compos Struct 65:289–305

    Article  Google Scholar 

  67. Zhang Z, Taheri F (2004) Dynamic damage initiation of composite beams subjected to axial impact. Compos Sci Technol 64:719–728

    Article  Google Scholar 

  68. Maimi P, Camanho PP, Mayugo JA, Davila CG (2007) A continuum damage model for composite laminates: part I – constitutive model. Mech Mater 39(10):897–808

    Article  Google Scholar 

  69. Sleight DW (1999) Progressive failure analysis methodology for laminated composite structures. NASA/TP-1999-209107

    Google Scholar 

  70. Chiu KD (1969) Ultimate Strength of laminated composites. J Compos Mater 3:578–582

    Article  MathSciNet  Google Scholar 

  71. Luo RK, Green ER, Morrison CJ (1999) Impact damage analysis of composite plates. Int J Impact Eng 22:435–447

    Article  Google Scholar 

  72. Camanho PP, Matthews FL (1999) A progressive damage model for mechanically fastened joints in composite laminates. J Compos Mater 33:2248–2280

    Article  Google Scholar 

  73. Papanikos P, Tserpes KI, Pantelakis SP (2003) Modelling of fatigue damage progression and life of CFRP laminates. Fatigue Fracture Eng Mater Struct 26:37–47

    Article  Google Scholar 

  74. Hahn HT, Tsai SW (1974) On the behaviour of composite laminates after initial failures. J Compos Mater 8:288–305

    Article  Google Scholar 

  75. Ghosh A, Sinha PK (2004) Dynamic and impact response of damaged laminated composite plates. Aircr Eng Aerosp Technol 76:29–23

    Article  Google Scholar 

  76. Balzani C, Wagner W (2008) An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng Fract Mech 75:2597–2615

    Article  Google Scholar 

  77. Linde P, De Boer H (2006) Modelling of inter-rivet buckling of hybrid composites. Compos Struct 73:221–228

    Article  Google Scholar 

  78. Sheikh AH, Bull PH, Kepler JA (2009) Behavior of multiple composite plates subjected to ballistic impact. Compos Sci Technol 69:704–710

    Article  Google Scholar 

  79. Kachanov LM (1958) Time of the rupture process under creep conditions. Izvetia Akademii Naukk SSSR. Otdelenie Tekhnischeskich Nauk

    Google Scholar 

  80. Rabotnov YN (1968) Creep rupture. In: Proceeding of XII international congress on applied mechanic. Springer, Stanford

    Google Scholar 

  81. Talreja R (1987) Modeling of damage development in composite using internal variable concepts. Damage mechanics in composites, ASME Winter annual meeting, Boston

    Google Scholar 

  82. Ladeveze P, Ledantec E (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267

    Article  Google Scholar 

  83. Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber composites. Mech Mater 20:125–152

    Article  Google Scholar 

  84. Barbero EJ, Lonetti P, Sikkil KK (2006) Finite element continuum damage modeling of plain weave reinforced composites. Compos Part B Eng 37:137–147

    Article  Google Scholar 

  85. Santiuste C, Sánchez-Sáez S, Barbero E (2010) A comparison of progressive-failure criteria in the prediction of the dynamic. Compos Struct 92(10):2406–2414

    Article  Google Scholar 

  86. Lopez-Puente J, Zaera R, Navarro C (2008) Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos Part A Appl S 39:374–387

    Article  Google Scholar 

  87. Iváñez I, Santiuste C, Sánchez-Sáez S (2010) FEM analysis of dynamic flexural behavior of composite sandwich beams with foam core. Compos Struct 92(9):2285–2291

    Article  Google Scholar 

  88. Ivañez I, Santiuste C, Sánchez-Sáez S, Barbero E (2011) Numerical modelling of foam-cored sandwich plates under high velocity impact. Compos Struct 93:2392–2399

    Article  Google Scholar 

  89. Smith JC, McCrackin FL, Schiefer HF (1958) Stress-strain relationships in yarns subjected to rapis impact loading: 5 Wave propagation in long tensile yarns impacted transversally. J Res Nat Bur Stand 60:517–534

    Article  MATH  Google Scholar 

  90. Roylance D (1980) Stress wave propagation in fibres: effect of crossovers. Fibre Sci Technol 13(5):385–395

    Article  Google Scholar 

  91. García-Castillo SK, Sánchez-Sáez S, Barbero E (2011) Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact. Mech Res Commun 38(5):404–407

    Article  Google Scholar 

  92. Zee RH, Wang CJ, Mount A, Jang BZ, Hsieh CY (1991) Ballistic response of polymer composites. Polym Compos 12:196–202

    Article  Google Scholar 

  93. Varas D, Zaera R, López-Puente J (2011) Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact. Compos Struct 93(10):2598–2609

    Article  Google Scholar 

  94. Kasano H (1999) Recent advances in high-velocity impact perforation of fiber composite laminates. JSME Int J A 42(2):147–157

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Spanish Comisión Interministerial de Ciencia y Tecnología (Projects TRA2007-66555) and Consejería de Educación de la Comunidad de Madrid (Projects GR/MAT/0498/2004 and IME-05-026) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Barbero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

García-Castillo, S.K., Sánchez-Sáez, S., Santiuste, C., Navarro, C., Barbero, E. (2013). Perforation of Composite Laminate Subjected to Dynamic Loads. In: Abrate, S., Castanié, B., Rajapakse, Y. (eds) Dynamic Failure of Composite and Sandwich Structures. Solid Mechanics and Its Applications, vol 192. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5329-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5329-7_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5328-0

  • Online ISBN: 978-94-007-5329-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics