Advertisement

Experimental and Numerical Study of Normal and Oblique Impacts on Helicopter Blades

  • J. Aubry
  • P. Navarro
  • I. Tawk
  • S. Marguet
  • J. F. Ferrero
  • S. Lemaire
  • P. Rauch
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 192)

Abstract

This study is concerned with the understanding, analysis, and prediction of major damage mechanisms in helicopter blade components subjected to a high velocity impact load. Two types of impact are studied: the frontal impact, which corresponds to a normal impact on the leading edge, and the oblique impact on the skin of the lower surface of the blade.

Several tests are performed to identify the parameters that control the response of the structure and the chronology of damage development.

Dynamic finite element models of the phenomena observed experimentally are proposed. To overcome the problems related to the size of the modeled structure, original modeling strategies are developed to accurately represent the damage observed. The calculated impact behavior and amount of damage are validated by comparison with experimental test results.

Keywords

Impact Energy Steel Ball Front Edge Foam Core Fiber Breakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was granted access to the HPC resources of CALMIP under the allocation 2012-[09105].

References

  1. 1.
    Abrate S (1991) Impact on laminate composites. Appl Mech 44:155–190CrossRefGoogle Scholar
  2. 2.
    Abrate S (1997) Impact on laminate composites, recent advances. Appl Mech 47:517–544Google Scholar
  3. 3.
    Abrate S (1998) Impact on composite structures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Talreja R (2008) Damage and fatigue in composites – a personal account. Compos Sci Technol 68:2585–2591CrossRefGoogle Scholar
  5. 5.
    Jonhson AF, Pickett AK, Rozycki P (2001) Computational methods for predicting impact damage in composite structure. Compos Sci Technol 61:2183–2192CrossRefGoogle Scholar
  6. 6.
    Hu N, Zemba Y, Okabe T, Yan C, Fukunaga H, Elmarakbi AM (2008) A new cohesive model for simulating delamination propagation in composite laminates under transverse loads. Mech Mater 40:920–935CrossRefGoogle Scholar
  7. 7.
    Tawk I, Navarro P, Ferrero JF, Barrau JJ, Abdullah E (2010) Composite delamination modeling using a multi layered solid element. Compos Sci Technol 70:207–214CrossRefGoogle Scholar
  8. 8.
    Tay TE, Liu G, Tan VBC, Sun XS, Pham DC (2008) Progressive failure analysis of composites. J Compos Mater 42:1921–1966CrossRefGoogle Scholar
  9. 9.
    Fleming DC (1999) Delamination modeling of composites for improved crash analysis. NASA CR-1999-209725, http://ntrs.nasa.gov/search.jsp?R=19990110662
  10. 10.
    Kim H, Welch DA, Kedward KT (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part A 34:25–41CrossRefGoogle Scholar
  11. 11.
    Liu Y, Shepard WS (2005) Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain. J Sound Vib 282:37–60CrossRefGoogle Scholar
  12. 12.
    Kiddy J, Pines D (2001) Experimental validation of a damage detection technique for helicopter main rotor blades. J Syst Control Eng 215:209–220Google Scholar
  13. 13.
    Inoue H, Harrigan JJ, Reid SR (2001) Review of inverse analysis for indirect measurement of impact force. Appl Mech Rev 54:503–524CrossRefGoogle Scholar
  14. 14.
    Morozov EV, Sylantiev SA, Evseev EG (2003) Impact damage tolerance of laminated composite helicopter blades. Compos Struct 62:367–371CrossRefGoogle Scholar
  15. 15.
    Pawar PM, Ganguli R (2005) On the effect of matrix cracks in composite helicopter rotor blade. Compos Sci Technol 65:581–594CrossRefGoogle Scholar
  16. 16.
    Pawar MP, Ganguli R (2007) On the effect of progressive damage on composite helicopter rotor system behavior. Compos Struct 78:410–423CrossRefGoogle Scholar
  17. 17.
    Pawar MP, Ganguli R (2006) Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications. Compos Sci Technol 66:2337–2349CrossRefGoogle Scholar
  18. 18.
    Kumar RS, Gurvich MR, Urban MR, Cappelli MD (2010) Structural integrity of composite rotor blades with service and ballistic damage. In: Proceedings of the American helicopter society 66th annual forum, Phoenix, AZGoogle Scholar
  19. 19.
    Kumar RS, Gurvich MR, Urban MR, Cappelli MD (2011) Dynamic modeling and analysis of composite rotor blades under low velocity impact loads. In: Proceedings of the American Helicopter Society 67th Annual Forum, Virginia Beach, VAGoogle Scholar
  20. 20.
    Navarro P, Aubry J, Marguet S, Ferrero JF, Lemaire S, Rauch P (2012) Experimental and numerical study of oblique impact on woven composite sandwich structure: influence of the firing axis orientation. Compos Struct 94(6):1967–1972CrossRefGoogle Scholar
  21. 21.
    Navarro P, Aubry J, Marguet S, Ferrero JF, Lemaire S, Rauch P (2012) Semi-continuous approach for the modeling of thin woven composite panels applied to oblique impacts on helicopter blades. Compos Part A 43(6):871–879CrossRefGoogle Scholar
  22. 22.
    Belytschko T, Lin JI, Tsay CS (1984) Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl Mech Eng 42:225–251CrossRefGoogle Scholar
  23. 23.
    Marguet S, Rozycki P, Gornet L (2006) A rate dependent constitutive model for carbon-fibre/epoxy-matrix woven fabrics submitted to dynamic loadings. In: IIIrd European conference on computational mechanics, Lisbon, Portugal, 5–8 June 2006, p 75Google Scholar
  24. 24.
    Simo JC, Hugues TJR (2000) Computational inelasticity. Springer, New YorkGoogle Scholar
  25. 25.
    Coutellier D, Rozycki P (2000) Multi-layered multi-material finite element for crashworthiness studies. Compos Part A Appl Sci Manuf 31:841–851CrossRefGoogle Scholar
  26. 26.
    Ladeveze P, Le Dantec E (1992) Damage modeling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267CrossRefGoogle Scholar
  27. 27.
    Naik NK, Yernamma P, Thoram NM, Gadipatri R, Kavala VR (2010) High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polym Test 29:14–22CrossRefGoogle Scholar
  28. 28.
    Powell MJD (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Advances in optimization and numerical analysis: proceedings of the Sixth Workshop on Optimization and Numerical Analysis, Oaxaca, Mexico – Key: citeulike:7297019, pp 51–67Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Aubry
    • 1
  • P. Navarro
    • 1
  • I. Tawk
    • 2
  • S. Marguet
    • 3
  • J. F. Ferrero
    • 3
  • S. Lemaire
    • 4
  • P. Rauch
    • 4
  1. 1.Université de Toulouse, ICA, ISAEToulouse CedexFrance
  2. 2.University of Balamand – Deir El-BalamandEl-KouraLebanon
  3. 3.Université de Toulouse/ICA/UPSToulouseFrance
  4. 4.Eurocopter Marignane/ETMB–Aéroport Marseille PMarignaneFrance

Personalised recommendations