Computational Modelling of Flow and Scalar Transport Accounting for Near-Wall Turbulence with Relevance to Gas Turbine Combustors

  • S. JakirlićEmail author
  • R. Jester-Zürker
  • G. John-Puthenveettil
  • B. Kniesner
  • C. Tropea
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


An overview is given of the activities in the framework of the German Collaborative Research Center “Flow and Combustion in Future Gas Turbine Combustion Chambers” (Sonderforschungsbereich SFB 568) concerning the development of computational models in the framework of the conventional RANS method with special focus on the near-wall turbulence and a method combining a near-wall RANS models in the wall vicinity with the conventional LES in the core flow and their applications to the flow separating from sharp-edged and continuous surfaces and different swirl combustor configurations under the conditions of constant and variable fluid properties.


RANS Hybrid LES/RANS Reynolds stress and scalar-flux transport models Near-wall turbulence Flow separation Swirling flows Variable fluid properties 



The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568.


Project-Related Publications

  1. 1.
    Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 539, 139–166 (2002)Google Scholar
  2. 2.
    Jakirlić, S., Jester-Zürker, R., Tropea, C.: Joint effects of geometry confinement and swirling inflow on turbulent mixing in model combustors: a second-moment closure study. J. Prog. CFD 4(3–5), 198–207 (2004)Google Scholar
  3. 3.
    Jakirlić, S., Eisfeld, B., Jester-Zürker, R., Kroll, N.: Near-wall, Reynolds-stress model calculations of transonic flow configurations relevant to aircraft aerodynamics. Int. J. Heat Fluid Flow 28(4), 602–615 (2007)CrossRefGoogle Scholar
  4. 4.
    Jakirlić, S., Kniesner, B., Kadavelil, G., Gnirß, M., Tropea, C.: Experimental and computational investigations of flow and mixing in a single-annular combustor configuration. Flow Turbul. Combust. 83(3), 425–448 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Jakirlić, S., Kadavelil, G., Kornhaas, M., Schäfer, M., Sternel, D.C., Tropea, C.: Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid Flow 31(5), 820–832 (2010)CrossRefGoogle Scholar
  6. 6.
    Jakirlić, S., Jovanović, J.: On unified boundary conditions for improved prediction of near-wall turbulence. J. Fluid Mech. 656, 530–539 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jakirlić, S., Kniesner, B.: Near-wall RANS modelling in LES of heat transfer in backward-facing step flows under conditions of constant and variable fluid properties. In: ASME 3rd Joint U.S.-European Fluids Engineering Summer Meeting: Symposium on “DNS, LES and Hybrid RANS/LES Methods”, Montreal, Quebec, Canada, Paper No. FEDSM-ICNMM2010-30354, 1–5 August 2010Google Scholar
  8. 8.
    Jakirlić, S., Jester-Zürker, R.: Convective heat transfer in wall-bounded flows affected by severe fluid properties variation: a second-moment closure study. In: ASME 3rd Joint U.S.-European Fluids Engineering Summer Meeting: “7th Symposium on Fundamental Issues and Perspectives in Fluid Mechanics”, Montreal, Quebec, Canada, Paper No. FEDSM-ICNMM2010-30729, 1–5 August 2010Google Scholar
  9. 9.
    Jakirlić, S., Chang, C.-Y., Kadavelil, G., Kniesner, B., Maduta, R., Sarić, S., Basara, B.: Critical evaluation of some popular hybrid LES/RANS methods by reference to flow separation at a curved wall (invited lecture). In: 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, Paper No. AIAA-2011-3473, 27–30 June 2011Google Scholar
  10. 10.
    Jakirlić, S., Kniesner, B., Kadavelil, G.: On interface issues in LES/RANS coupling strategies: a method for turbulence forcing. JSME J. Fluid Sci. Technol. 6(1), 56–72 (2011)CrossRefGoogle Scholar
  11. 11.
    Jester-Zürker, R., Jakirlić, S., Tropea, C.: Computational modelling of turbulent mixing in confined swirling environment under constant and variable density conditions. Flow Turbul. Combust. 75(1–4), 217–244 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jester-Zürker, R.: Reynolds-Spannungsmodellierung des Skalartransports unter Bedingungen variabler Stoffeigenschaften in Drallbrennerkonfigurationen (Second-Moment Closure modelling of scalar transport in swirl combustors under variable flow property conditions). PhD thesis, Technische Universität Darmstadt. Shaker Verlag, Aachen. ISBN 978-3-8322-6742-1 (2006)Google Scholar
  13. 13.
    John-Puthenveettil, G., Jia, L., Reimann, T., Jakirlić, S., Sternel, D.C.: Thermal mixing of flow-crossing streams in a T-shaped junction: a comparative LES, RANS and Hybrid LES/RANS study. In: 7th International Symposium on Turbulence, Heat and Mass Transfer, Palermo, Italy, 24–27 September 2012Google Scholar
  14. 14.
    John-Puthenveettil, G.: Computational modelling of complex flows using eddy-resolving models accounting for near-wall turbulence. PhD thesis, Technische Universität Darmstadt (2012)Google Scholar
  15. 15.
    Kniesner, B.: Ein hybrides LES/RANS Verfahren für konjugierte Strömung, Wärme- und Stoffübertragung mit Relevanz zu Drallbrennerkonfigurationen (A hybrid LES/RANS method for conjugated flow, heat and mass transfer with relevance to swirl combustor configurations). PhD thesis, Technische Universität Darmstadt, Darmstadt. (2008)
  16. 16.
    Šarić, S., Jakirlić, S., Čavar, D., Kniesner, B., Altenhöfer, P., Tropea, C.: Computational study of mean flow and turbulence structure in inflow system of a swirl combustor. In: Tropea, C., et al. (eds.) Notes on numerical fluid mechanics and multidisciplinary design, vol. 96, pp. 462–470. Springer, Berlin/New York (2007). ISBN 978-3-540-74458-0Google Scholar

Other Publications

  1. 17.
    Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ= 1020 with Pr = 0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)CrossRefGoogle Scholar
  2. 18.
    Avancha, R.V.R., Pletcher, R.H.: Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. Int. J. Heat Fluid Flow 23, 601–614 (2002)CrossRefGoogle Scholar
  3. 19.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)zbMATHCrossRefGoogle Scholar
  4. 20.
    Cherry, E.M., Elkins, C.J., Eaton, J.K.: Geometric sensitivity of three-dimensional separated flows. Int. J. Heat Fluid Flow 29, 803–811 (2008)CrossRefGoogle Scholar
  5. 21.
    Cherry, E.M., Elkins, C.J., Eaton, J.K.: Pressure measurements in a three-dimensional separated diffuser. Int. J. Heat Fluid Flow 30, 1–2 (2009)CrossRefGoogle Scholar
  6. 22.
    Chien, K.-Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 23.
    Davidson, L., Dahlström, S.: Hybrid LES/RANS: computation of the flow around a three-dimensional hill. In: 6th International Symposium on Engineering Turbulence Modelling and Measurements, Sardinia, Italy, 23–25 May 2005Google Scholar
  8. 24.
    FASTEST-Manual.: Institute of Numerical Methods in Mechanical Engineering, Department of Mechanical Engineering, Technische Universität Darmstadt, Germany (2005)Google Scholar
  9. 25.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 26.
    Gnirß, M., Tropea, C.: Simultaneous PIV and concentration measurements in a gas-turbine combustor model. Exp. Fluids 45(4), 643–656 (2008)CrossRefGoogle Scholar
  11. 27.
    Greenblatt, D., Paschal, K.B., Yao, C.S., Harris, J., Schaeffler, N.W., Washburn, A.E.: A separation control CFD validation test case, Part1: baseline and steady suction, In: AIAA Paper No. 2004–2220 (2004)Google Scholar
  12. 28.
    Hanjalić, K., Popovac, M., Hadziabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004)CrossRefGoogle Scholar
  13. 29.
    Hirota, M., Mohri, E., Asano, H., Goto, H.: Experimental study on turbulent mixing process in cross-flow type T-junction. Int. J. Heat Fluid Flow 31(5), 776–784 (2010)CrossRefGoogle Scholar
  14. 30.
    Hoyas, S., Jimenez, J.: Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003. Phys. Fluids 18, 011702 (2006)CrossRefGoogle Scholar
  15. 31.
    Kader, B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24, 1541–1544 (1981)CrossRefGoogle Scholar
  16. 32.
    Kasagi, N., Matsunaga, A.: Three-dimensional particle-tracking velocimetry measurements of turbulence statistics and energy budget in a backward facing step flow. Int. J. Heat Fluid Flow 16, 477–485 (1995)CrossRefGoogle Scholar
  17. 33.
    Kasagi, N., Iida, O.: Progress in direct numerical simulation of turbulent heat transfer. In: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CA, 15–19 March 1999Google Scholar
  18. 34.
    Klein, M., Janicka, J., Sadiki, A.: A digital filter based generation of inflow data for spatially developing direct numerical or large-eddy simulations. J. Comput. Phys. 186, 652–665 (2003)zbMATHCrossRefGoogle Scholar
  19. 35.
    Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–138 (1974)CrossRefGoogle Scholar
  20. 36.
    Mason, P.J., Callen, N.S.: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulation of turbulent channel flow. J. Fluid Mech. 162, 439–462 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 37.
    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modelling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)CrossRefGoogle Scholar
  22. 38.
    Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24(4), 538–550 (2003)CrossRefGoogle Scholar
  23. 39.
    Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000). ISBN 0-521-59886-9zbMATHCrossRefGoogle Scholar
  24. 40.
    Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78, 177–202 (2007)zbMATHCrossRefGoogle Scholar
  25. 41.
    Rapp, Ch.: Experimentelle Untersuchung der turbulenten Strömung über periodische Hügel. PhD thesis, Technical University Munich, Germany (2008)Google Scholar
  26. 42.
    Rapp, C., Manhart, M.: Flow over periodic hills: an experimental study. Exp. Fluids 51, 247–269 (2011)CrossRefGoogle Scholar
  27. 43.
    Satake, S., Kunugi, T., Shehata, A.M., McEligot, D.M.: Direct numerical simulation for laminarization of turbulent forced gas flows in circular tubes with strong heating. Int. J. Heat Fluid Flow 21, 526–534 (2000)CrossRefGoogle Scholar
  28. 44.
    Shehata, A.M., McEligot, D.M.: Mean structure in the viscous layer of strongly-heated internal gas flows. Measurements. Int. J. Heat Mass Transf. 41, 4297–4313 (1998)CrossRefGoogle Scholar
  29. 45.
    Temmerman, L., Hadžiabdić, M., Leschziner, M.A., Hanjalić, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)CrossRefGoogle Scholar
  30. 46.
    Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backwards-facing step. ASME J. Heat Transf. 107, 922–929 (1985)CrossRefGoogle Scholar
  31. 47.
    Wang, W.-P., Pletcher, R.: On the large eddy simulation of a turbulent channel flow with significant heat transfer. Phys. Fluids 8(12), 3354–3366 (1996)zbMATHCrossRefGoogle Scholar
  32. 48.
    Yoshizawa, A., Horiuti, K.: A statistically-derived subgridscale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985)CrossRefGoogle Scholar
  33. 49.
    Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)CrossRefGoogle Scholar
  34. 50.
    Durst, F., Schäfer, M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22, 549–565 (1996)zbMATHCrossRefGoogle Scholar
  35. 51.
    Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491–511 (1978)zbMATHCrossRefGoogle Scholar
  36. 52.
    Lai, Y.G., So, R.M.C.: Near-wall modelling of turbulent heat fluxes. Int. J. Heat Mass Trans. 33(7), 1429–1440 (1990)CrossRefGoogle Scholar
  37. 53.
    Jones, W.P.: Turbulence modelling for combustion flows. In: Modelling for Combustion and Turbulence. Lecture series 1992–03. von Karman Institute for Fluid Dynamics, Rhode Saint Geneèse (1992)Google Scholar
  38. 54.
    Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)zbMATHCrossRefGoogle Scholar
  39. 55.
    Seki, Y., Kawamoto, N., Kawamura, H.: Proposal of turbulent heat flux model and its application to turbulent channel flow with various thermal boundary conditions. In: Hanjalic et al. (eds.) Turbulence, Heat and Mass Transfer 4, pp. 569-576. Begell House Inc., New York (2003)Google Scholar
  40. 56.
    Sternel, D.C., Junglas, D., Martin, A., Schäfer, M.: Optimisation of partitioning for parallel flow simulation on block structural grids. In: Topping, B.H.V., Mota Soares, C.A. (eds.) Proceedings of the 4th International Conference on Engineering Computational Technology. Stirling, paper 93. Civil-Comp Press, Stirling (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Jakirlić
    • 1
    • 2
    Email author
  • R. Jester-Zürker
    • 1
    • 3
  • G. John-Puthenveettil
    • 1
  • B. Kniesner
    • 1
    • 4
  • C. Tropea
    • 1
    • 2
  1. 1.Department of Mechanical Engineering, Institute of Fluid Mechanics and AerodynamicsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Voith Hydro Holding GmbH & CoHeidenheimGermany
  4. 4.TP24 System AnalysisAstrium Space TransportationMunichGermany

Personalised recommendations