Discontinuous Galerkin Methods for Premixed Combustion Multiphase Problems

  • M. OberlackEmail author
  • F. Kummer
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


Employing the low Mach number approximation, premixed combustion can be modeled as a two-phase flow with the flame modeled as a non-material interface. This will induce jumps in velocity and pressure at the interface, which depend on density ratio. In classical numerical methods for single-phase flows, such as finite volume, it is difficult to represent jumps accurately and stable, i.e. without oscillations, at the same time. Within this work we propose an extension to the Discontinuous Galerkin method which is able to exactly represent jumps, with sub-cell accuracy.


Discontinuous Galerkin G-Equation Level set Premixed combustion 



The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568.


  1. 1.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, T., Minev, P.D., Nandakumar, K.: A projection scheme for incompressible multiphase flow using adaptive eulerian grid. Int. J. Numer. Methods Fluids 45, 1–19 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cockburn, B., Karniadakis, G.E., Shu, Chi-Wang.: Discontinuous Galerkinmethods: Theory, Computation and Applications. Number 11 in Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000)Google Scholar
  5. 5.
    Cockburn, B., Shu, Chi-Wang.: TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411 (1989)Google Scholar
  6. 6.
    Cockburn, B., Shu, Chi-Wang.: The p1-rkdg method for two-dimensional euler equations of gas dynamics. In: NASA Contractor Report187542, ICASE Report 91–32, p. 12 (1991)Google Scholar
  7. 7.
    Cockburn, B. Shu, Chi-Wang.: The Runge-Kutta discontinuous galerkin method for conservation laws v. J. Comput. Phys., 141(2), 199–224 (1998)Google Scholar
  8. 8.
    Esser, P., Grande, J., Reusken, A.: An extended finite element method applied to levitated droplet problems. Int. J. Numer. Methods Eng. 84(7), 757–773 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Falgout, R. Jones, J., Yang, Ulrike.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Barth, T.J., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T., Bruaset, A. M., Tveito, A. (eds.) Numerical solution of partial differential equations on parallel computers, volume 51 of Lecture notes in computational science and engineering, pp. 267–294. Springer, Berlin/Heidelberg (2006). 10.1007/3-540-31619-1_8Google Scholar
  10. 10.
    Grooss, J., Hesthaven, J.: A level set discontinuous galerkin method for free surface flows. Comput. Methods Appl. Mech. Eng. 195(25–28), 3406–3429 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Groß, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40–58 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225, 949–974 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Marchandise, E., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219(2), 780–800 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Meister, A.: Numerik linearer Gleichungssysteme: eine Einführung in moderne Verfahren. Vieweg, Wiesbaden (2005)zbMATHGoogle Scholar
  15. 15.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)Google Scholar
  17. 17.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, CONF-730414–2; LA-UR–73-479, p. 23. Los Alamos Scientific Laboratory, New Mexico (USA) (1973)Google Scholar
  18. 18.
    Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)zbMATHGoogle Scholar
  19. 19.
    Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  22. 22.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  23. 23.
    Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)zbMATHCrossRefGoogle Scholar
  24. 24.
    Triebel, H.: Höhere Analysis. Verlag Harri Deutsch, Thun und Frankfurt am Main (1980)zbMATHGoogle Scholar
  25. 25.
    Walter, W.: Einführung in die Theorie der Distributionen. BI Wissenschaftsverlag, Mannheim (1973)Google Scholar
  26. 26.
    Wang, Y., Oberlack, M.: A thermodynamic model of multiphase flows with moving interfaces and contact line. Contin. Mech. Thermodyn. 23, 409–433 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Williams, F.A.: Turbulent combustion. In: Buckmaster, J.D. (ed.) The Mathematics of Combustion, volume 2 of Frontiers in Applied Mathematics, pp. 267–294. Society for Industrial Mathematics (SIAM), Philadelphia (1985)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Processing EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Graduate School Computational EngineeringTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Center of Smart InterfaceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations