Simplified Reaction Models for Combustion in Gas Turbine Combustion Chambers

  • Dirk LebiedzEmail author
  • Jochen Siehr
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


The aim of this work is an effective dimension reduction of chemical combustion mechanisms. Despite permanently growing computer power, the simulation of a reaction-diffusion-convection system involving a large scale chemical combustion mechanism is still far from reach. On the other hand, prediction of e.g. soot, NOx, and other pollutants needs detailed mechanisms. Here, model reduction methods can be used for generation of small models. At first, the focus of this work has been on an efficient use of the intrinsic low dimensional manifold method. Later, a new method has been developed based on optimization methods. An efficient tool for solving these optimization problems has been developed and reaction models up to the size of syngas combustion have been reduced.


Model reduction Slow invariant manifold Chemical kinetics Nonlinear optimization 



The authors acknowledge the financial support from the German Research Council (DFG) through the project B2 within SFB 568.

The authors wish to thank the late Jürgen Warnatz (IWR, Heidelberg) for providing professional mentoring for combustion research.


Project-Related Publications

  1. 1.
    Lebiedz, D.: Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys. 120(15), 6890–6897 (2004)CrossRefGoogle Scholar
  2. 2.
    Lebiedz, D.: Entropy-related extremum principles for model reduction of dynamical systems. Entropy 12(4), 706–719 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Lebiedz, D., Reinhardt, V., Kammerer, J.: Novel trajectory based concepts for model and complexity reduction in (bio)chemical kinetics. In: Gorban, A.N., Kazantzis, N., Kevrekidis, I.G., Theodoropoulos, C. (eds.) Model Reduction and Coarse-Graining Approaches for Multi-scale Phenomena, pp. 343–364. Springer, Berlin (2006)CrossRefGoogle Scholar
  4. 4.
    Lebiedz, D., Reinhardt, V., Siehr, J.: Minimal curvature trajectories: Riemannian geometry concepts for slow manifold computation in chemical kinetics. J. Comput. Phys. 229(18), 6512–6533 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Lebiedz, D., Reinhardt, V., Siehr, J., Unger, J.: Geometric criteria for model reduction in chemical kinetics via optimization of trajectories. In: Gorban, A.N., Roose, D. (eds.) Coping with Complexity: Model Reduction and Data Analysis, pp. 241–252. Springer, Dordrecht (2010)Google Scholar
  6. 6.
    Lebiedz, D., Siehr, J., Unger, J.: A variational principle for computing slow invariant manifolds in dissipative dynamical systems. SIAM J. Sci. Comput. 33(2), 703–720 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Reinhardt, V., Winckler, M., Lebiedz, D.: Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches. J. Phys. Chem. A 112(8), 1712–1718 (2008)CrossRefGoogle Scholar
  8. 8.
    Siehr, J., Lebiedz, D.: An optimization approach to kinetic model reduction for combustion chemistry. Submitted (2012)Google Scholar

Other Publications

  1. 9.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. A 23(1), 15–41 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 10.
    Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations. SIAM, Philadelphia (1998)zbMATHCrossRefGoogle Scholar
  3. 11.
    Bell, B.M.: Automatic differentiation software CppAD (2010). URL
  4. 12.
    Bell, B.M., Burke, J.V.: Algorithmic differentiation of implicit functions and optimal values. In: Bischof, C.H., Bücker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.) Advances in Automatic Differentiation, pp. 67–77. Springer, Dordrecht (2008)CrossRefGoogle Scholar
  5. 13.
    Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical report, Argonne National Laboratory (2005)Google Scholar
  6. 14.
    Bykov, V., Maas, U.: Reaction-diffusion manifolds and global quasi-linearization: two complementary methods for mechanism reduction. Open Thermodyn. J. 4, 92–100 (2010). doi: 10.2174/1874396X01004010092 CrossRefGoogle Scholar
  7. 15.
    Chiavazzo, E., Gorban, A.N., Karlin, I.V.: Comparison of invariant manifolds for model reduction in chemical kinetics. Commun. Comput. Phys. 2(5), 964–992 (2007)MathSciNetGoogle Scholar
  8. 16.
    Chiavazzo, E., Karlin, I.V., Gorban, A.N., Boulouchos, K.: Combustion simulation via lattice Boltzmann and reduced chemical kinetics. J. Stat. Mech. Theory Exp. 2009(6), P06,013 (2009). doi: 10.1088/1742-5468/2009/06/P06013 CrossRefGoogle Scholar
  9. 17.
    Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. USA 38, 235–243 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 18.
    Davis, M.J., Skodje, R.T.: Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys. 111, 859–874 (1999)CrossRefGoogle Scholar
  11. 19.
    Delhaye, S., Somers, L.M.T., van Oijen, J.A., de Goey, L.P.H.: Incorporating unsteady flow-effects in flamelet-generated manifolds. Combust. Flame 155(1–2), 133–144 (2008)CrossRefGoogle Scholar
  12. 20.
    Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 21.
    Fraser, S.J.: The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988)CrossRefGoogle Scholar
  14. 22.
    Gilbert, R., Luther, K., Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Ber. Bunsenges Phys. Chem. 87, 169–177 (1983)CrossRefGoogle Scholar
  15. 23.
    Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  16. 24.
    Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, vol. 660. Springer, Berlin/Heidelberg/New York (2005)zbMATHGoogle Scholar
  17. 25.
    Gorban, A.N., Karlin, I.V., Zinovyev, A.: Invariant grids: method of complexity reduction in reaction networks. Complexus 2, 110–127 (2005). doi: 10.1159/000093684 CrossRefGoogle Scholar
  18. 26.
    Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Constructive methods of invariant manifolds for kinetic problems. Phys. Rep. 396, 197–403 (2004). doi: 10.1016/j.physrep. 2004.03.006 MathSciNetCrossRefGoogle Scholar
  19. 27.
    HSL: A collection of Fortran codes for large-scale scientific computation (2007). URL
  20. 28.
    Kaper, H.G., Kaper, T.J.: Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys. D 165, 66–93 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 29.
    Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley-Interscience, Hoboken (2003)Google Scholar
  22. 30.
    Lam, S.: Recent advances in the aerospace sciences. In: Casci, C. (ed.) Singular Perturbation for Stiff Equations Using Numerical Methods, pp. 3–20. Plenum Press, New York/London (1985)Google Scholar
  23. 31.
    Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994)CrossRefGoogle Scholar
  24. 32.
    Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)CrossRefGoogle Scholar
  25. 33.
    Maas, U., Warnatz, J.: Simulation of thermal ignition processes in two-dimensional geometries. Z. Phys. Chem. N. F. 161, 61–81 (1989)CrossRefGoogle Scholar
  26. 34.
    Nguyen, A.H., Fraser, S.J.: Geometrical picture of reaction in enzyme kinetics. J. Chem. Phys. 91, 186–193 (1989)CrossRefGoogle Scholar
  27. 35.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  28. 36.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Dold, A., Eckmann, B. (eds.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 144–157. Springer, Berlin (1978)CrossRefGoogle Scholar
  29. 37.
    Ren, Z., Pope, S.: Species reconstruction using pre-image curves. Proc. Combust. Inst. 30, 1293–1300 (2005). doi: 10.1016/j.proci.2004.07.017 CrossRefGoogle Scholar
  30. 38.
    Ren, Z., Pope, S.B.: The use of slow manifolds in reactive flows. Combust. Flame 147, 243–261 (2006). doi: 10.1016/j.combustflame.2006.09.002 CrossRefGoogle Scholar
  31. 39.
    Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics. J. Chem. Phys. 124, 114,111 (2006)Google Scholar
  32. 40.
    Rhodes, C., Morari, M., Wiggins, S.: Identification of low order manifolds: validating the algorithm of Maas and Pope. Chaos 9(1), 108–123 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 41.
    Singh, S., Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive systems. J. Chem. Phys. 117(4), 1482–1496 (2002). doi: 10.1063/1.1485959 CrossRefGoogle Scholar
  34. 42.
    Skanda, D.: Robust optimal experimental design for model descrimination of kinetic ODE systems. PhD thesis, University of Freiburg. Submitted (2012)Google Scholar
  35. 43.
    Skanda, D., Lebiedz, D.: An optimal experimental design approach to model discrimination in dynamic biochemical systems. Bioinformatics 26(7), 939–945 (2010). doi: 10.1093/bioinformatics/btq074 CrossRefGoogle Scholar
  36. 44.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., Qin, Z.: GRIMech 3.0. Published online (1999). URL
  37. 45.
    Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. I. Strong collision rate constants. Ber. Bunsenges Phys. Chem. 87, 161–169 (1983)CrossRefGoogle Scholar
  38. 46.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 47.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)Google Scholar
  40. 48.
    Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14(1), 59–91 (2004). doi: 10.1007/s00332-003-0582-9 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Numerical MathematicsUniversity of UlmUlmGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany

Personalised recommendations