Advertisement

Advanced Laser Diagnostics for Understanding Turbulent Combustion and Model Validation

  • B. Böhm
  • D. Geyer
  • M. A. Gregor
  • C. Heeger
  • A. Nauert
  • C. Schneider
  • A. DreizlerEmail author
Chapter
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)

Abstract

This contribution is not an original publication but a report of cumulative work that was carried out within the framework of SFB 568. The work was published in different archival journals and figures and text passages have been taken from different journal articles as indicated by the references. The aim of this report is to present experiments in projects B1 and B3 for improving our understanding in turbulent combustion with a focus of turbulent flow and scalar fields as well as their mutual interactions. The report is restricted to generic gaseous turbulent flames that feature different characteristics important to practical applications. The methods presented here are feasible to study boundary conditions, flow and scalar fields and are based all on interactions between laser light and matter. Following a brief introduction, two target flames are discussed in Sect. 4.2. Sections 4.3 and 4.4 exemplify flow and scalar measurements. Section 4.5 discusses combined scalar/flow measurements that can significantly improve our understanding of turbulence-chemistry interactions. In Sect. 4.6 new developments based on high-repetition-rate imaging are highlighted. These diagnostics complement methods at low repetition rate commonly used to generate an understanding by statistical moments and probability density functions. High repetition rate imaging techniques presently are an emerging field. Although the most recent developments achieved in the funding period of the Collaborative Research Center are included to this report, near-future progress in this field will lead to even more interesting insights into combustion phenomena.

Keywords

Combustion laser diagnostics Raman/Rayleigh PIV OH-PLIF LDA 

Notes

Acknowledgements

Financial support of Deutsche Forschungsgemeinschaft through SFB 568 Projects B1 and B3 and TU Darmstadt is kindly acknowledged.

References

Project-Related Publications

  1. 1.
    Geyer, D., et al.: Finite rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulation. Proc. Combust. Inst. 30, 711–718 (2005)CrossRefGoogle Scholar
  2. 2.
    Geyer, D., et al.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)CrossRefGoogle Scholar
  3. 3.
    Böhm, B., et al.: In-Nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85, 73–93 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gregor, M.A., et al.: Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc. Combust. Inst. 32, 1739–1746 (2009)CrossRefGoogle Scholar
  6. 6.
    Nauert, A., et al.: Experimental analysis of flash back in lean premixed swirling flames: conditions close to flash back. Exp. Fluids 43, 89–100 (2007)CrossRefGoogle Scholar
  7. 7.
    Geyer, D., et al.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRefGoogle Scholar
  8. 8.
    Omar, S.K., et al.: Investigation of flame structures in turbulent partially premixed counter-flow flames using laser-induced fluorescence. Prog. Comput. Fluid Dyn. 4, 241–249 (2004)CrossRefGoogle Scholar
  9. 9.
    Böhm, B., et al.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)CrossRefGoogle Scholar
  10. 10.
    Nauert, A., Dreizler, A.: Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame. Z. Phys. Chem. 219, 635–648 (2005)CrossRefGoogle Scholar
  11. 11.
    Bork, B., et al.: 1D high-speed Rayleigh measurements in turbulent flames. Appl. Phys. B 101, 487–491 (2010)CrossRefGoogle Scholar
  12. 12.
    Böhm, B., et al.: New perspectives on turbulent combustion: multi-parameter high-speed laser diagnostics. Flow Turbul. Combust. 86, 313–341 (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Böhm, B., et al.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRefGoogle Scholar

Other Publications

  1. 14.
    Geyer, D., et al.: Finite rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulation. Proc. Combust. Inst. 30, 711–718 (2005)CrossRefGoogle Scholar
  2. 15.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press, Cambridge, MA (1972)Google Scholar
  3. 16.
    Geyer, D., et al.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)CrossRefGoogle Scholar
  4. 17.
    Böhm, B., et al.: In-Nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85, 73–93 (2010)zbMATHCrossRefGoogle Scholar
  5. 18.
    Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)zbMATHCrossRefGoogle Scholar
  6. 19.
    Gregor, M.A., et al.: Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc. Comb. Inst. 32, 1739–1746 (2009)CrossRefGoogle Scholar
  7. 20.
    Heeger, C., et al.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49, 853–864 (2010)CrossRefGoogle Scholar
  8. 21.
    Nauert, A., et al.: Experimental analysis of flash back in lean premixed swirling flames: conditions close to flash back. Exp. Fluids 43, 89–100 (2007)CrossRefGoogle Scholar
  9. 22.
    Borghi, R.: On the structure and morphology of turbulent premixed flames. In: Bruno, C., Casci, C. (eds.) Recent Advances in Aeronautical Science. Pergamon Press, London (1984)Google Scholar
  10. 23.
    Peters, N.: Turbulent Combustion, p. 304. Cambridge University Press, Cambridge (2000)zbMATHCrossRefGoogle Scholar
  11. 24.
    Barlow, R.S.: International Workshop on Measurement and Computation of Turbulent Non-premixed Flames (TNF), Sandia National Laboratories (2012)Google Scholar
  12. 25.
    Gupta, A.K., Lilley, D.G., Syred, N.: Swril Flows. Abacus, Cambridge/Tunbridge Wells (1984)Google Scholar
  13. 26.
    Escudier, M.P., Keller, J.J.: Recirculation in swirling flows: a manifestation of voretx breakdown. AIAA J. 23, 111–116 (1985)CrossRefGoogle Scholar
  14. 27.
    Freitag, M., et al.: Mixing analysis of a swirling flow using DNS and experimental data. Int. J. Heat Fluid Flow 27, 636–643 (2006)CrossRefGoogle Scholar
  15. 28.
    Ferrao, P., Heitor, M.V.: Simultaneous velocity and scalar measurements in premixed recirculating flames. Exp. Fluids 24, 399–407 (1998)CrossRefGoogle Scholar
  16. 29.
    Geyer, D., et al.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRefGoogle Scholar
  17. 30.
    Maury, F.A., Libby, P.A.: Nonpremixed flames in stagnating turbulence. Part I–The k-e theory with equilibrium chemistry for the methane-air system. Combust. Flame 102(3), 341–356 (1995)CrossRefGoogle Scholar
  18. 31.
    Eckstein, J., et al.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc. Combust. Inst. 28, 141–148 (2000)CrossRefGoogle Scholar
  19. 32.
    Omar, S.K., et al.: Investigation of flame structures in turbulent partially premixed counter-flow flames using laser-induced fluorescence. Prog. Comput. Fluid Dyn. 4, 241–249 (2004)CrossRefGoogle Scholar
  20. 33.
    Böhm, B., et al.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)CrossRefGoogle Scholar
  21. 34.
    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68(3), 537–566 (1975)zbMATHCrossRefGoogle Scholar
  22. 35.
    Chou, C.P., et al.: Modeling of turbulent opposed-jet mixing flows with k-e model and second-order closure. Int. J. Heat Mass Transf. 47(5), 1023–1035 (2004)zbMATHCrossRefGoogle Scholar
  23. 36.
    Permana, A.: Turbulent Combustion in Opposed Jet Flows, in Berkeley. University of London, London (2003)Google Scholar
  24. 37.
    Sung, C.J., Law, C.K., Chen, J.-Y.: An argumented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)Google Scholar
  25. 38.
    Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 39.
    Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1998)CrossRefGoogle Scholar
  27. 40.
    Bilger, R.W.: The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475–488 (1988)Google Scholar
  28. 41.
    Korusoy, E., Whitelaw, J.H.: Extinction and relight in opposed flames. Exp. Fluids 33, 75–89 (2002)Google Scholar
  29. 42.
    Pitsch, H.: Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29, 1971–1978 (2002)CrossRefGoogle Scholar
  30. 43.
    Bray, K.N.C., Libby, P.A., Moss, J.B.: Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Technol. 41, 143–172 (1984)CrossRefGoogle Scholar
  31. 44.
    Libby, P.A.: Theory of normal premixed turbulent flames revisited. Prog. Energy Combust. Sci. 11, 83–96 (1985)CrossRefGoogle Scholar
  32. 45.
    Butler, T.D., O’Rourke, P.J.: A numerical method for two-dimensional unsteady reacting flows. Proc. Combust. Inst. 16, 1503–1515 (1977)Google Scholar
  33. 46.
    Kerstein, A.R.: Linear-eddy modeling of turbulent transport, part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)zbMATHCrossRefGoogle Scholar
  34. 47.
    Menon, S.: Subgrid combustion modeling for large-eddy simulations. Int. J. Engine Res. 1, 209–227 (2000)CrossRefGoogle Scholar
  35. 48.
    Markstein, G.: Nonsteady Flame Propagation. Pergamon Press, Oxford (1964)Google Scholar
  36. 49.
    Williams, F.A.: Combustion Theory. Addison-Wesley, Reading (1985)Google Scholar
  37. 50.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)CrossRefGoogle Scholar
  38. 51.
    Chen, Y.C., et al.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996)CrossRefGoogle Scholar
  39. 52.
    Sardi, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction of turbulent counterflow flames under periodic strain. Combust. Flame 120(3), 265–284 (2000)CrossRefGoogle Scholar
  40. 53.
    Bourguignon, E., et al.: Experimentally measured burning rates of premixed turbulent flames. Proc. Combust. Inst. 26, 447–453 (1996)Google Scholar
  41. 54.
    Li, S.C., Libby, P.A., Williams, F.A.: Experimental investigation of a premixed flame in an impigning turbulent stream. Proc. Combust. Inst. 25, 1207–1214 (1994)Google Scholar
  42. 55.
    Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 485–494 (1995)CrossRefGoogle Scholar
  43. 56.
    Plessing, T., et al.: Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359–366 (2000)CrossRefGoogle Scholar
  44. 57.
    Kortschik, C., Plessing, T., Peters, N.: Laser optical investigation of turbulent transport of temperature ahead of the preheat zone in a premixed flame. Combust. Flame 136, 43–50 (2004)CrossRefGoogle Scholar
  45. 58.
    Soika, A., Dinkelacker, F., Leipertz, A.: Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry. Proc. Combust. Inst. 27, 785–792 (1998)Google Scholar
  46. 59.
    Sattler, S., Knaus, D.A., Gouldin, F.C.: Determination of three-dimensional flamelet orientation in turbulent V-flames from two-dimensional image data. Proc. Combust. Inst. 29, 1785–1792 (2002)CrossRefGoogle Scholar
  47. 60.
    Kalt, P.A.M., Frank, J.H., Bilger, R.W.: Laser imaging of conditional velocities in premixed propane-air flames by simultaneous OH PLIF and PIV. Proc. Combust. Inst. 27, 751–758 (1998)Google Scholar
  48. 61.
    Frank, J.H., Kalt, P.A.M., Bilger, R.W.: Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust. Flame 116(1–2), 220–232 (1999)CrossRefGoogle Scholar
  49. 62.
    Most, D., Dinkelacker, F., Leipertz, A.: Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle imaging velocimetry. Proc. Combust. Inst. 29, 2669–2678 (2002)CrossRefGoogle Scholar
  50. 63.
    Bray, K.N.C.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Topics in Applied Physics, vol. 44, pp. 115–183. Springer, Berlin (1980)Google Scholar
  51. 64.
    Bray, K.N.C., Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astonautica 4, 291–319 (1977)CrossRefGoogle Scholar
  52. 65.
    Veynante, D., et al.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)zbMATHGoogle Scholar
  53. 66.
    Gomez, A., Rosner, D.E.: Thermophoretic effects on particles in counterflow laminar diffusion flames. Combust. Sci. Technol. 89, 335–362 (1993)CrossRefGoogle Scholar
  54. 67.
    Nauert, A., Dreizler, A.: Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame. Z. Phys. Chem. 219, 635–648 (2005)CrossRefGoogle Scholar
  55. 68.
    Wegner, B., et al.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiment. Heat Fluid Flow 25, 528–536 (2004)CrossRefGoogle Scholar
  56. 69.
    Barlow, R.S., Karpetis, A.N.: Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames. Proc. Combust. Inst. 30, 673–680 (2004)CrossRefGoogle Scholar
  57. 70.
    Dally, B.B., et al.: Instantaneous and mean compositional structure of Bluff-Body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)CrossRefGoogle Scholar
  58. 71.
    Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)CrossRefGoogle Scholar
  59. 72.
    Frank, J.H., Kaiser, S.A., Long, M.B.: Polarized/depolarized Rayleigh scattering for determining fuel concentrations in flames. Proc. Combust. Inst. 29, 2687–2694 (2002)CrossRefGoogle Scholar
  60. 73.
    Dibble, R.W., et al.: Conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering. Exp. Fluids 5, 103–113 (1987)CrossRefGoogle Scholar
  61. 74.
    Goss, L.P., Trump, D.D., Roquemore, W.M.: Combined CARS/LDA instrument for simultaneous temperature; velocity measurements. Exp. Fluids 6, 189–198 (1988)CrossRefGoogle Scholar
  62. 75.
    Donbar, J.M., Driscoll, J.F., Carter, C.D.: Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images. Combust. Flame 122(1–2), 1–19 (2000)CrossRefGoogle Scholar
  63. 76.
    Han, D., Mungal, M.G.: Stabilization in turbulent lifted deflected-jet flames. Proc. Combust. Inst. 29, 1889–1895 (2002)CrossRefGoogle Scholar
  64. 77.
    Bray, K.N.C., Champion, M., Libby, P.A.: Flames in stagnating turbulence. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 573–607. Academic, London (1994)Google Scholar
  65. 78.
    Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Scalar dissipation rate at the extinction of turbulent counterflow nonpremixed flames. Combust. Flame 91, 55–64 (1992)CrossRefGoogle Scholar
  66. 79.
    Kitajima, A., et al.: Experimental study of extinction and its quantification in laminar and turbulent counterflow CH4-N2/O2-N2 nonpremixed flames. Combust. Flame 137(1–2), 93–108 (2004)CrossRefGoogle Scholar
  67. 80.
    Kalt, P.A.M., Chen, Y.-C., Bilger, R.W.: Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust. Flame 129(4), 401–415 (2002)CrossRefGoogle Scholar
  68. 81.
    Paone, N.: Velocity measurements in turbulent premixed flames: development of a PIV measurement system and comparison with LDV. In Seventh International Symposium on Application of Laser techniques to Fluid Mechanics, Lisbon, Portugal (1994)Google Scholar
  69. 82.
    Barlow, R.S., et al.: Effect of Damköhler number on super equilibrium OH concentrations in turbulent nonpremixed jet flames. Combust. Flame 82, 235–251 (1990)CrossRefGoogle Scholar
  70. 83.
    Nalm, H.N., et al.: Western States Section/The Combustion Institute, Spring Meeting. Sandia National Laboratories (1997)Google Scholar
  71. 84.
    Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the second international PIV challenge. Exp. Fluids 39, 170–191 (2005)CrossRefGoogle Scholar
  72. 85.
    Raffel, M., Willert, C., Kompenhans, J.: Particle Imaging Velocimetry: A Practical Guide. Springer, Berlin (1998)Google Scholar
  73. 86.
    Cowen, E.A., Monismith, S.G.: A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22, 199–211 (1997)CrossRefGoogle Scholar
  74. 87.
    Muniz, L., Martinez, R.E., Mungal, M.G.: Application of PIV to turbulent reacting flows. In Eighth International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (1996)Google Scholar
  75. 88.
    Sung, C.J., Law, C.K., Axelbaum, R.L.: Thermophoretic effects on seeding particles in LDV measurements of flames. Combust. Sci. Technol. 99, 119–132 (1994)CrossRefGoogle Scholar
  76. 89.
    Rehm, J.E., Clemens, N.T.: Local extinction in an unsteady methane-air jet diffusion flame. Proc. Combust. Inst. 27, 1113–1120 (1998)Google Scholar
  77. 90.
    Kaminski, C.F., Long, M.B.: Multi-dimensional diagnostics in space and time. In: Kohse-Höinghaus, K., Jeffries, J.B. (eds.) Diagnostic Challenges for Gas Turbine Combustor Model Validation, pp. 224–251. Taylor & Francis, New York (2002)Google Scholar
  78. 91.
    Jiang, N.B., Webster, M.C., Lempert, W.R.: Advances in generation of high-repetition-rate burst mode laser output. Appl. Opt. 48, B23–B31 (2009)CrossRefGoogle Scholar
  79. 92.
    Wang, G.H., Clemens, N.T., Varghese, P.L.: Two-point, high-repetition rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl. Opt. 44, 6741–6751 (2005)CrossRefGoogle Scholar
  80. 93.
    Bork, B., et al.: 1D high-speed Rayleigh measurements in turbulent flames. Appl. Phys. B 101, 487–491 (2010)CrossRefGoogle Scholar
  81. 94.
    Upatnieks, A., Driscoll, J.F., Ceccio, S.L.: Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst. 29, 1897–1903 (2002)CrossRefGoogle Scholar
  82. 95.
    Kaminski, C.F., Hult, J., Aldén, M.: High repetition rate planar laser-induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B 68, 757–760 (1999)CrossRefGoogle Scholar
  83. 96.
    Li, D., et al.: Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 32, 1272–1274 (2007)CrossRefGoogle Scholar
  84. 97.
    Fajardo, C.M., Sick, V.: Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser. Appl. Phys. B 85, 25–31 (2006)CrossRefGoogle Scholar
  85. 98.
    Ahmed, S.F., Balachandran, R., Mastorakos, E.: Measurement of ignition probability in turbulent non-premixed counterflow flames. Proc. Combust. Inst. 31, 1507–1513 (2007)CrossRefGoogle Scholar
  86. 99.
    Böhm, B., et al.: New perspectives on turbulent combustion: multi-parameter high-speed laser diagnostics. Flow Turbul. Combust. 86, 313–341 (2011)zbMATHCrossRefGoogle Scholar
  87. 100.
    Winkler, A., Wäsle, J., Sattelmayer, T.: Laserinduzierte Fluoreszenz in Echtzeit zur Bestimmung des Flammenlärms. Fachtagung “Lasermethoden in der Strömungsmesstechnik” 12, 18-1–18-8 (2004)Google Scholar
  88. 101.
    Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)CrossRefGoogle Scholar
  89. 102.
    Böhm, B., et al.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRefGoogle Scholar
  90. 103.
    Lemaire, A., et al.: PIV/PLIF investigation of two-phase vortex-flame interactions: effects of vortex size and strength. Exp. Fluids 36, 36–42 (2004)CrossRefGoogle Scholar
  91. 104.
    Katta, V.R., et al.: Insights into non-adiabatic equilibrium flame temperatures during millimeter-size vortex/flame interactions. Combust. Flame 132, 639–651 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Böhm
    • 1
  • D. Geyer
    • 1
  • M. A. Gregor
    • 1
  • C. Heeger
    • 1
  • A. Nauert
    • 1
  • C. Schneider
    • 1
  • A. Dreizler
    • 1
    Email author
  1. 1.Reactive Flows and Diagnostics, Center of Smart Interfaces, Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations