Experimental and Numerical Investigation of Shear-Driven Film Flow and Film Evaporation

  • P. Stephan
  • T. Gambaryan-Roisman
  • M. Budakli
  • J. R. Marati
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


Shear-driven liquid film flows can occur in several locations of fuel preparation systems, e.g. inside air-driven atomizers or in Lean Pre-mixing Pre-vaporizing (LPP) combustion chambers of modern gas turbines. In LPP chambers the liquid fuel is primary atomized by a pressure nozzle and sprayed onto a pre-filmer. Fine fuel droplets accumulate at the pre-filmer surface and form a thin liquid film driven by hot compressed air to the inlet section of the combustion chamber. While the thin liquid film is accelerating along the wall, it evaporates and mixes with the hot air. The turbulent air flow induces strong shear forces at the air-liquid interface leading to a destabilization of the liquid film and the development of waves. The hydrodynamics of the wavy film flow govern the heat and mass transport and, hence, the entire fuel preparation process. Hydrodynamics and heat and mass transport strongly depend on the microstructure of the pre-filmer wall surface. In this work, the fundamentals of gravity-driven as well as air-driven film flow and evaporation on unstructured and microstructured wall surfaces have been investigated experimentally and numerically. It has been shown that longitudinal microgrooves have a stabilizing effect on the film flow. Flow regimes leading to a strong increase of evaporation efficiency have been identified. Local film thickness distributions have been measured using high-speed shadowgraphy. Wall temperature distributions have been measured using embedded thermocouples. The measurements have been performed for film Reynolds numbers varying from 225 to 650, for gas Reynolds numbers varying from 104 to 7·104, and for wall heat fluxes up to 40 W/cm2. High-speed infrared images have been recorded to visualize local film break-up and rewetting. Corresponding numerical studies of the gas–liquid flow and heat transfer along a heated wall have been conducted using Computational Fluid Dynamics (CFD). In order to track the moving gas–liquid interface, the volume of fluid (VOF) method has been adopted. Parametric numerical studies have been performed and compared with experimental data.


Shear-driven thin liquid films Wavy film flow Film rupture CFD VOF 



cross-sectional area [m2]

a, c

channel geometrical parameters (Fig. 2.6) [m]


tube diameter [m]


channel width [mm]


film thickness [μm]

\( \dot{M} \)

mass flow rate [kg/s]


number of images [−]


pressure [bar]

\( {{\dot{q}}_{\text{W}}} \)

wall heat flux [W/cm2]


wall temperature [°C]


mean wall temperature [°C]


liquid inlet temperature [°C]

x, y, z

x, y- and z-axis [m]


Reynolds number [−]












Greek Characters


liquid volume fraction [−]


time [s]


shear stress [N/m2]


thermal conductivity [W/(m·K)]]


dynamic viscosity [kg/(m·s)]



The authors acknowledge the financial support of the German Science Foundation (Deutsche Forschungsgemeinschaft) in the framework of the Collaborative Research Center 568 (Subproject A2).


Project-Related Publications

  1. 1.
    Helbig, K.: Messung zur Hydrodynamik und zum Wärmetransport bei der Filmverdamfung. EPDA Elektronische Publikationen Darmstadt. Accessed 07 Apr 2011
  2. 2.
    Gambaryan-Roisman, T., Stephan, P.: Analysis of falling film evaporation on grooved surfaces. J. Enhanced Heat Trans. 10(4), 445–457 (2003)CrossRefGoogle Scholar
  3. 3.
    Gambaryan-Roisman, T., Alexeev, A., Stephan, P.: Effect of the microscale wall topography on the thermocapillary convection within a heated liquid film. Exp. Therm. Fluid Sci. 29, 765–772 (2005)CrossRefGoogle Scholar
  4. 4.
    Kabova, Y., Alexeev, A., Gambaryan-Roisman, T., Stephan, P.: Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall. Phys. Fluids 18, 012104 (2006)CrossRefGoogle Scholar
  5. 5.
    Löffler, K., Yu, H., Gambaryan-Roisman, T., Stephan, P.: Hydrodynamics and heat transfer of thin films flowing down inclined smooth and structured plates. In: Proceedings of the 4th International Berlin Workshop – IBW4 on Transport Phenomena with Moving Boundaries, Berlin (2007)Google Scholar
  6. 6.
    Kunkelmann, C., Ibrahem, K., Schweizer, N., Herbert, S., Stephan, P., Gambaryan-Roisman, T.: The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int. J. Heat Mass Trans. 55(7–8), 1896–1904 (2012)CrossRefGoogle Scholar
  7. 7.
    Helbig, K., Alexeev, A., Gambaryan-Roisman, T., Stephan, P.: Evaporation of falling and shear-driven films on smooth and grooved surfaces. Flow Turbul. Combust. 75, 85–104 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Helbig, K., Nasarek, R., Gambaryan-Roisman, T., Stephan, P.: Effect of longitudinal mini-grooves on flow stability and wave characteristics of falling liquid films. ASME J. Heat Trans. 131, 011601 (2009)CrossRefGoogle Scholar
  9. 9.
    Gambaryan-Roisman, T., Stephan, P.: Flow and stability of rivulets on heated surfaces with topography. ASME J. Heat Trans. 131(3), 033101 (2009)CrossRefGoogle Scholar
  10. 10.
    Marati, J., Budakli, M., Gambaryan-Roisman, T., Stephan, P.: Heat transfer in shear-driven thin liquid film flows, MP14. In: Proceedings of the ICHMT International Symposium on Advances in Computational Heat Transfer, July 1–6, Bath, England (2012)Google Scholar

Other Publications

  1. 11.
    Pommersberger, K.: Untersuchung der Gemischaufbereitung in Gasturbinenbrennkammern unter Berücksichtigung der Eigenschaften kommerzieller Flüssigbrennstoffe. PhD Dissertation, TH Karlsruhe, Institut für Thermische Strömungsmaschinen (2003)Google Scholar
  2. 12.
    Arbeiter, F.: Experimentelle Untersuchung zum Emissionsverhalten einer LPP Brenn-kammer mit Film-verdunstung. Diploma Thesis, TH Karlsruhe, Institut für Thermische Strömungsmaschinen (2002)Google Scholar
  3. 13.
    Batarseh, F.Z., Roisman, I.V., Tropea, C.: Spray generated by an airblast atomizer at high-pressure conditions. In: Proceedings of ASME Turbo Expo, Fostering Gas Turbine Education, Technology & Networking, Montreal (2007)Google Scholar
  4. 14.
    Schober, P., Ebner, J., Schäfer, O., Wittig, S., Experimental study on the effect of a strong negative pressure gradient on a shear-driven liquid fuel film. In: Proceedings of 9th ICLASS, Sorrento, Italy (2003)Google Scholar
  5. 15.
    Lan, H., Friedrich, M., Armaly, B.F., Drallmeier, J.A.: Simulation and measurement of 3D shear-driven thin liquid film flow in a duct. Int. J. Heat Fluid Flow 29, 449–459 (2008)CrossRefGoogle Scholar
  6. 16.
    Elsäßer, A., Samenfink, W., Ebner, J., Dullenkopf, K., Wittig, S.: Dynamics of shear driven liquid films. In: Proceedings of 7th International Conference on Laser Anemometry, Karlsruhe (1997)Google Scholar
  7. 17.
    Asali, J.C., Hanratty, T.J.: Ripples generated on a liquid film at high gas velocities. Int. J. Multiphase Flow 19, 229–243 (1993)zbMATHCrossRefGoogle Scholar
  8. 18.
    Bar-Cohen, A., Sherwood, G., Hodes, M., Solbreken, G.L.: Gas-assisted evaporative cooling of high density electronic modules. IEEE Trans. CPMT A 18(3), 502–509 (1995)Google Scholar
  9. 19.
    Kabov, O.A., Zaitsev, D.V., Cheverda, V.V., Bar-Cohen, A.: Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels. Exp. Therm. Fluid Sci. 35, 825–831 (2011)CrossRefGoogle Scholar
  10. 20.
    Fujita, Y.: Boiling and evaporation of falling film on horizontal tubes and its enhancement on grooved tubes. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yuncu, H. (eds.) Heat Transfer Enhancement of Heat Exchangers, pp. 325–346. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  11. 21.
    Wierschem, A., Aksel, N.: Influence of inertia on eddies created in films creeping over strongly undulated surfaces. Phys. Fluids 16(12), 4566–4574 (2004)CrossRefGoogle Scholar
  12. 22.
    Stephan, P., Busse, C.A.: Analysis of heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Trans. 35(2), 383–391 (1992)CrossRefGoogle Scholar
  13. 23.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)zbMATHCrossRefGoogle Scholar
  14. 24.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 25.
    Lam, C.K.G., Bremhorst, K.: A modified form of the k-ε model for predicting wall turbulence. J. Fluids Eng. 103, 456–460 (1981)CrossRefGoogle Scholar
  16. 26.
    OpenFOAM documentation: Programmer’s and User’s Guide, OpenCFD Limited (2007)Google Scholar
  17. 27.
    Rup, K., Soczowka, M.: An improved low Reynolds number k-ε model for heat transfer calculations. Forschung im Ingenieurwesen 65, 225–235 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • P. Stephan
    • 1
    • 2
  • T. Gambaryan-Roisman
    • 1
    • 2
  • M. Budakli
    • 1
  • J. R. Marati
    • 1
  1. 1.Institut für Technische ThermodynamikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Center of Smart InterfaceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations