Advertisement

High-Speed Laser Diagnostics for the Investigation of Cycle-to-Cycle Variations of IC Engine Processes

  • S. H. R. Müller
  • B. BöhmEmail author
  • A. Dreizler
Chapter
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)

Abstract

The work presented in this report was conducted within the Collaborative Research Center 568 funded by the Deutsche Forschungsgemeinschaft over a period of eleven years. The aim of project T4 was the transfer of laser based measurement techniques, which were used and improved in the context of stationary gas turbine combustion, to the investigation of intermittent processes in internal combustion (IC) engines. The focus was on cycle-to-cycle fluctuations as they appear in recent direct injection IC engines. High-speed measurement techniques were applied to investigate the temporal evolution of the in-cylinder flow, fuel distribution and flame propagation. Charge motion was investigated by particle image velocimetry (PIV) and spray by imaging of Mie-scattering. Mixture distribution was captured qualitatively by means of planar laser induced fluorescence (PLIF) of a fluorescing fuel. OH-PLIF was used to investigate the development of the early flame kernel and turbulent flame propagation.

Keywords

High-speed laser diagnostics Particle image velocimetry (PIV) Laser induced fluorescence (PLIF) Direct injection engine Cycle-to-cycle variation 

Notes

Acknowledgements

The authors acknowledge the financial support from Deutsche Forschungs-gemeinschaft (DFG) through the SFB 568.

References

  1. 1.
    Fansler, T.D., Drake, M.C., Böhm, B.: High-speed Mie-scattering diagnostics for spray-guided gasoline engine development. In: Proceedings of the 8th International Symposium on Combustion Diagnostics, Baden-Baden, pp. 413–425 (2008)Google Scholar
  2. 2.
    Arcoumanis, C., Whitelaw, J.H.: Fluid mechanics of internal combustion engines – a review. Proc. Inst. Mech. Eng. 201, 57–74 (1987)CrossRefGoogle Scholar
  3. 3.
    Kume, T., Iwamoto, Y., Lida, K., Murakami, M., Akishino, K., Ando, H.: Combustion control technologies for direct injection SI engine. SAE Paper 960600 (1996)Google Scholar
  4. 4.
    Wieske, P., Wissel, S., Grünefeld, G., Graf, M., Pischinger, S.: Experimental investigation of the origin of cyclic fluctuations in a DISI engine by means of advanced laser induced exciplex fluorescence measurements. SAE Paper 2006-01-3378 (2006)Google Scholar
  5. 5.
    Unterlechner, P., Kneer, R.: Experimentelle und numerische Untersuchungen zum Einfluss zyklischer Schwankungen auf die Struktur motorischer Einspritzstrahlen. In: Proceedings in Turbulenz in der Energietechnik, Darmstadt (2005)Google Scholar
  6. 6.
    Sick, V., Smith, J.D.: Laser combustion diagnostics, applications to engines. In: Proceedings der 10. LACSEA (OSA Topical Meeting), paper TuB1 (2006)Google Scholar
  7. 7.
    Fischer, J., Xander, B., Velji, A., Spicher, U.: Cycle resolved determination of local air-fuel ratio at the spark gap using a direct injection gasoline engine. In: Proceedings of the International Symposium on Internal Combustion Diagnostics, pp. 162–173 (2004)Google Scholar
  8. 8.
    Böhm, B., Heeger, C., Gordon, R.L., Dreizler, A.: New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics. Flow Turb. Combust. 86, 313–341 (2011)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fajardo, C., Sick, V.: Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution. Proc. Combust. Inst. 31, 3023–3031 (2007)CrossRefGoogle Scholar
  10. 10.
    Towers, D.P., Towers, C.E.: Cyclic variability measurements of in-cylinder engine flows using high-speed particle image velocimetry. Meas. Sci. Technol. 15, 1917–1925 (2004)CrossRefGoogle Scholar
  11. 11.
    Justham, T., Jarvis, S., Clarke, A., Garner, C.P., Hargrave, K., Halliwell, N.A.: Simultaneous study of intake and in-cylinder IC engine flow fields to provide an insight into intake induced cyclic variations. J. Phys. Conf. Ser. 45, 146–153 (2006)CrossRefGoogle Scholar
  12. 12.
    Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data. Exp. Fluids 39, 1009–1023 (2005)CrossRefGoogle Scholar
  13. 13.
    Voisine, M., Thomas, L., Borée, J., Rey, P.: Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow. Exp. Fluids 50(5), 1393–1407 (2011)CrossRefGoogle Scholar
  14. 14.
    Smith, J.D., Sick, V.: Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane. Proc. Combust. Inst. 31, 747–755 (2007)CrossRefGoogle Scholar
  15. 15.
    Peterson, B., Sick, V.: Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine. Appl. Phys. B 97(4), 887–895 (2009)CrossRefGoogle Scholar
  16. 16.
    Müller, S.H.R., Böhm, B., Gleißner, M., Grzeszik, R., Arndt, S., Dreizler, A.: Flow field measurements in an optically accessible, direct-injection spray-guided internal combustion engine using high-speed PIV. Exp. Fluids 48, 281–290 (2010)CrossRefGoogle Scholar
  17. 17.
    Gleißner, M., Arndt, S., Grzeszik, R., Dreizler, A., Böhm, B., Müller, S.H.R.: Analyse der Brennraumströmung einer Direkteinspritzenden Ottomotors mittels Hochgeschwindigkeits-Particle Image Velocitmetry: Auswirkung auf Gemischbildung und Verbrennung. Presented at 9th Engine Combustion Processes Conference, Munich, Germany (2009)Google Scholar
  18. 18.
    Müller, S., Arndt, S., Dreizler, A.: Analysis of the in-cylinder flow field/spray injection interaction within a DISI IC engine using high-speed PIV. SAE Technical Paper 2011-01-1288 (2011)Google Scholar
  19. 19.
    Müller, S., Arndt, S., Dreizler, A.: Investigation of the air/fuel mixture distribution in an internal combustion engine using high-speed laser induced fluorescence. In: European Combustion Meeting (2011)Google Scholar
  20. 20.
    Müller, S.H.R., Böhm, B., Gleißner, M., Arndt, S., Dreizler, A.: Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF. Appl. Phys. B 100, 447–452 (2010)CrossRefGoogle Scholar
  21. 21.
    Böhm, B., et al.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center of Smart InterfaceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute for Energy and Powerplant Technology, Department of Mechanical and Processing EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations