Efficient Numerical Schemes for Simulation and Optimization of Turbulent Reactive Flows

  • J. SiegmannEmail author
  • G. Becker
  • J. Michaelis
  • M. Schäfer
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


An approach for the efficient simulation and optimization of turbulent reactive flow problems is presented. A gradient-based optimization strategy is employed involving a parallel multigrid solver for the flow and sensitivity equations. The geometry variation is realized using NURBS surfaces providing a large scale of possible deformations with a small number of design variables. The sensitivity-based computation of the gradient of the objective function is systematically verified by comparisons with finite-difference approximations. The efficiency of the multigrid method and the parallelization is investigated. The functionality of the optimization approach is illustrated by results for representative test cases.


Optimization Continuous sensitivity equation NURBS Multigrid Parallelization 


  1. 1.
    Durst, F., Schäfer, M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22, 549–565 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Harth, Z., Sun, H., Schäfer, M.: Comparison of derivative free Newton-based and evolutionary methods for shape optimization of flow problems. Int. J. Numer. Methods Fluids 53, 753–777 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hirschen, K., Schäfer, M.: Artifical neural networks for shape optimization in CFD. In: Proceedings of Design Optimization International Conference, Athens (2004)Google Scholar
  4. 4.
    Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gunzburger, M.: Adjoint equation-based methods for control problems in viscous, incompressible flows. Flow Tubul. Combust. 65, 249–272 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borggaard, J., Burns, J.: A PDE sensitivity equation method for optimal aerodynamic design. Int. J. Comput. Phys. 136, 366–384 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Burkhardt, J., Peterson, J.: Control of steady incompressible 2d channel flows. Flow Control IMA Vol. Math. Appl. 68, 111–216 (1995)Google Scholar
  8. 8.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chien, K.H.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 22, 33–38 (1982)CrossRefGoogle Scholar
  11. 11.
    Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms: Theory, Implementation, and Application. Defense Technical Information Center OAI-PMH Repository (1998)Google Scholar
  12. 12.
    É, T., Pelletier, D., Borggaard, J.: A continuous sensitivity equation approach to optimal design in mixed convection. Numer. Heat Trans. A Appl. 38(8), 869–885 (2000)CrossRefGoogle Scholar
  13. 13.
    Duvigneau, R., Pelletier, D.: On accurate boundary conditions for a shape sensitivity equation method. Int. J. Numer. Methods Fluids 50, 147–164 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Siegmann, J., Becker, G., Michaelis, J., Schäfer, M.: A general sensitivity based shape optimization approach for arbitrary surfaces. In: Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization, WCSMO, Lisbon (2009)Google Scholar
  15. 15.
    Jacoby, S.L.S., Kowalik, J.S., Pizzo, J.T.: Iterative Methods for Nonlinear Optimization Problems. Prentice-Hall, Englewood Cliffs (1972)zbMATHGoogle Scholar
  16. 16.
    Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford Science, Oxford (2001)zbMATHGoogle Scholar
  17. 17.
    Becker, G., Siegmann, J., Michaelis, J., Schäfer, M.: Comparison of a derivative-free and a gradient-based shape optimization method in the context of fluid–structure interaction. In: 8th World Congress on Structural and Multidisciplinary Optimization, WCSMO, Lisbon (2009)Google Scholar
  18. 18.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Becker, G., Falk, U., Schäfer, M.: Shape optimization with higher-order surfaces in consideration of fluid–structure interaction. In: Fluid–Structure Interaction: Theory, Numerics and Applications. Kassel University Press, Kassel (2009)Google Scholar
  20. 20.
    Schäfer, M., Heck, M., Yigit, S.: An implicit partitoned method for the numerical simulation of fluid–structure interaction. In: Bungartz, H.-J., Schäfer, M. (eds.) Fluid–Structure Interaction: Modelling, Simulation, Optimization, 53, pp. 171–194. Springer, Berlin/Heidelberg (2006)Google Scholar
  21. 21.
    Lehnhäuser, T., Ertem-Müller, S., Schäfer, M., Janicka, J.: Advances in numerical methods for simulating turbulent flows. Prog. Comput. Fluid Dyn. 4(3–5), 208–228 (2004)CrossRefGoogle Scholar
  22. 22.
    Lehnhäuser, T.: Eine effiziente numerische Methode zur Gestaltoptimierung von Strömungsgebieten. TU Darmstadt (2005)Google Scholar
  23. 23.
    Lehnhäuser, T., Schäfer, M.: Improved linear practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Gauß, F., Schäfer, M.: A local adaptive grid refinement strategy for block-structured finite-volume solvers. In: Proceedings of the 6th International Conference on Engineering Computational Technology, Athens (2008)Google Scholar
  25. 25.
    Gauß, F., Schäfer, M., Siegmann, J., Sternel, D.: On the influence of boundary discretization schemes on the accuracy of flow simulation with local refinement. In: IV International Conference on Adaptive Modelling and Simulation 2009, Brussels (2009)Google Scholar
  26. 26.
    Gauß, F.: Strategien zur lokalen adaptiven Gitterverfeinerung für Strömungslöser. TU Darmstadt (2005)Google Scholar
  27. 27.
    Schäfer, M.: Computational Engineering – Introduction to Numerical Methods. Springer, Berlin (2006)Google Scholar
  28. 28.
    Briggs, W.L., Henson, V.E., Kaspar, B.: A Multigrid Tutorial. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)zbMATHGoogle Scholar
  30. 30.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Elsevier Academic Press, San Diego (2001)zbMATHGoogle Scholar
  31. 31.
    Michaelis, J., Siegmann, J., Becker, G., Schäfer, M.: Efficiency of geometric multigrid methods for solving the sensitivity equatins within gradient based flow optimzazion problems. In Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon (2010)Google Scholar
  32. 32.
    Michaelis, J., Siegmann, J., Schäfer, M.: Parallel efficiency of multigrid methods for solving flow sensitivity equations. In: Proceedings of the CFD and OPTIMIZATION 2011–002, Antalya (2011)Google Scholar
  33. 33.
    Hempel, R.: The MPI standard for message passing. Lect. Notes Comput. Sci. 797, 247–252 (1994)CrossRefGoogle Scholar
  34. 34.
    Stanley, L.G., Stewart, D.L.: Design Sensitivity Analysis. SIAM, Philadelphia (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Siegmann
    • 1
    Email author
  • G. Becker
    • 1
  • J. Michaelis
    • 1
  • M. Schäfer
    • 1
  1. 1.Institute for Numerical Methods in Mechanical Engineering, Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations