Primary Atomization in an Airblast Gas Turbine Atomizer

  • L. OpferEmail author
  • I. V. Roisman
  • C. Tropea
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 1581)


This study focuses on the spray atomization, transport and impact on a solid substrate under cross-flow conditions, as used in airblast atomizers with prefilmers for aero engines and gas turbines. The phenomena are observed using a high-speed video system and the spray is characterized using the phase Doppler technique. The governing mechanisms of drop formation, wall collision and aerodynamic breakup are identified. It is shown that three different mechanisms are mainly responsible for the formation of single drops from the bulk liquid. These are: primary atomization, breakup of the liquid wall film and further aerodynamic breakup of droplets. Finally, an atomization model is developed, which accounts for primary atomization, wall film formation and aerodynamic breakup. The model predicts the distribution of the drop diameters and velocities in the generated spray. The agreement between the model predictions and the experimental data is very good.


Atomization Airblast atomizer Spray impact Aerodynamic breakup 



The authors acknowledge the financial support from the German Research Council (DFG) through the SFB568.


Project-Related Publications

  1. 1.
    Batarseh, F., Gnirß, M., Roisman, I.V., Tropea, C.: Fluctuations of a spray generated by an airblast atomizer. Exp. Fluids 46, 1081–1091 (2009)CrossRefGoogle Scholar
  2. 2.
    Chrigui, M., Roisman, I.V., Batarseh, F.Z., Sadiki, A., Tropea, C.: Spray generated by an airblast atomizer under elevated ambient pressures. J. Propuls. Power 26, 1170–1183 (2009)CrossRefGoogle Scholar
  3. 3.
    Chrigui, M., Sadiki, A., Batarseh, F., Janika, J., Tropea, C.: Numerical and experimental study of spray produced by an asirblast atomizer under elevated pressure conditions. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. June 9–13, 2008, Berlin, Germany (2008)Google Scholar
  4. 4.
    Roisman, I.V., Batarseh, F.Z., Tropea, C.: Chaotic disintegration of a liquid wall film: a model of an air-blast atomization. Atomiz. Sprays 20(10), 837–845 (2010)CrossRefGoogle Scholar
  5. 5.
    Roisman, I.V., Batarseh, F.Z., Tropea, C.: Characterization of a spray generated by an airblast atomizer with prefilmer. Atomiz. Sprays 20(10), 887–903 (2010)CrossRefGoogle Scholar
  6. 6.
    Opfer, L., Roisman, I.V., Tropea, C.: High speed visualization of drop and spray impact on rigid walls with cross-flow, poster. In: International Conference on Multiphase Flows, Tampa, USA (2010)Google Scholar
  7. 7.
    Opfer, L., Roisman, I.V., Tropea C.: Spray impact on walls with cross-flow, poster. Workshop on Near Wall Reactive Flows, Seeheim, Germany (2010)Google Scholar
  8. 8.
    Opfer, L., Roisman, I.V., Tropea, C.: Spray Impact on Walls with Cross-flow: Experiments and Modeling. ILASS Europe, Estoril (2011)Google Scholar
  9. 9.
    Opfer, L., Roisman, I.V., Tropea, C.: Laboratory simulations of an airblast atomization: main mechanisms of liquid disintegration and spray characteristics, Exp. Fluids, submitted, March 2012.Google Scholar

Other Publications

  1. 10.
    Lefebvre, A.: Atomization and Sprays. Hemisphere Publishing Corporation, New York (1989)Google Scholar
  2. 11.
    Nukiyama, S., Tanasawa, Y.: Experiments on the atomization of liquids in an airstream. Trans. Soc. Mech. Eng. Jpn. 5, 62–75 (1939)Google Scholar
  3. 12.
    Lorenzetto, G.E., Lefebvre, A.H.: Measurements of drop size on a plain jet airblast atomizer. AIAA J. 5, 62–75 (1939)Google Scholar
  4. 13.
    Jasuja, A.K.: Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions. ASME Paper 82-GT-32 (1982)Google Scholar
  5. 14.
    Rizk, N.K., Lefebvre, A.H.: Spray characteristics of plain-jet airblast atomizers. J. Eng. Gas Turbines Power 106(3), 634–638 (1984)CrossRefGoogle Scholar
  6. 15.
    Issac, K., Missoum, A., Drallmeier, J., Johnston, A.: Atomization experiments in a coaxial co-flowing mach 1.5 flow. AIAA J. 32(8), 1640–1646 (1994)CrossRefGoogle Scholar
  7. 16.
    Hede, P.D., Bach, P., Jensen, A.D.: Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review. Chem. Eng. Sci. 63(14), 3821–3842 (2008)CrossRefGoogle Scholar
  8. 17.
    Lasheras, J.C., Hopfinger, E.J.: Liquid jet instability and atomization in a coaxial gas stream. Ann. Rev. Fluid Mech. 32(1), 275–308 (2000)CrossRefGoogle Scholar
  9. 18.
    Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 32, 73–111 (2003)Google Scholar
  10. 19.
    Varga, C.M., Lasheras, J.C., Hopfinger, E.J.: Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J. Fluid Mech. 497, 405–434 (2003)zbMATHCrossRefGoogle Scholar
  11. 20.
    Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A., Connolly, E.K.: Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modelling. Int. J. Multiphase Flow 34(2), 161–175 (2008)CrossRefGoogle Scholar
  12. 21.
    O’Rourke P.J., Amsden A.A.: The tab method for numerical calculation of spray droplet breakup. SAE Technical Paper 872089 (1987)Google Scholar
  13. 22.
    Tanner, F.X.: Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. Atomiz. Sprays 14(3), 211–242 (2004)MathSciNetCrossRefGoogle Scholar
  14. 23.
    Entov, V.M., Yarin, A.L.: Dynamical equations for a liquid jet. Fluid Dyn. 15(5), 644–649 (1984)CrossRefGoogle Scholar
  15. 24.
    Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984)zbMATHCrossRefGoogle Scholar
  16. 25.
    Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiphase Flow 21(Supplement), 99–127 (1995)zbMATHCrossRefGoogle Scholar
  17. 26.
    Stahl, M., Damaschke, N., Tropea C.: Experimental investigation of turbulence and cavitation inside a pressure atomizer and optical characterization of the generated spray. In: 10th ICLASS Conference, Kyoto (2006)Google Scholar
  18. 27.
    Dai, Z., Chou, W.H., Faeth, G.M.: Drop formation due to turbulent primary breakup at the free surface of plane wall jets. Phys. Fluids 10(5), 1147–1157 (1998)CrossRefGoogle Scholar
  19. 28.
    Rein, M.: Turbulent open-channel flows: drop-generation and self-aeration. J. Hydraul. Eng. 124(1), 670–675 (1999)CrossRefGoogle Scholar
  20. 29.
    Desjardins, O., Moureau, V., Knudsen, E., Herrmann, M., Pitsch, H.: Conservative Level Set/ghost Fluid Method for Simulating Primary Atomization. ILASS Americas, Toronto (2007)Google Scholar
  21. 30.
    Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman/Wiley, Harlow/New York (1993)zbMATHGoogle Scholar
  22. 31.
    Villermaux, E., Marmottant, P., Duplat, J.: Ligament-mediated spray formation. Phys. Rev. Lett. 92(7), 074501 (2004)CrossRefGoogle Scholar
  23. 32.
    Kolmogorov, A.N.: On the log-normal distribution of particles sizes during breakup process. Dokl. Akad. Nauk. SSSR, pp. 99–101 (1941)Google Scholar
  24. 33.
    Gorochovski, M., Saveliev, V.: Further analyses of Kolmogorov’s model of breakup. Phys. Fluids 15, 184–192 (2003)CrossRefGoogle Scholar
  25. 34.
    Hsiang, L.P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiphase Flow 18(5), 635–652 (1992)zbMATHCrossRefGoogle Scholar
  26. 35.
    Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Secondary atomization. Exp. Fluids 46(3), 371–402 (2009)CrossRefGoogle Scholar
  27. 36.
    Schmehl R.: Modeling droplet breakup in complex two-phase flows. In: ICLASS Conference, Sorento, Italy (2003)Google Scholar
  28. 37.
    Hinze, J.O.: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295 (1955)CrossRefGoogle Scholar
  29. 38.
    Hsiang, L.P., Faeth, G.M.: Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiphase Flow 21(4), 545–560 (1995)zbMATHCrossRefGoogle Scholar
  30. 39.
    Ranger, A.A., Nicholls, J.A.: The aerodynamic shattering of liquid drops. AIAA 7, 285 (1969)CrossRefGoogle Scholar
  31. 40.
    Liu, Z., Reitz, R.D.: An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int. J. Multiphase Flow 23(4), 631–650 (1997)zbMATHCrossRefGoogle Scholar
  32. 41.
    Snyder, H.E., Reitz, R.D.: Direct droplet production from a liquid film: a new gas-assisted atomization mechanism. J. Fluid Mech. 375, 363–81 (1998)zbMATHCrossRefGoogle Scholar
  33. 42.
    Lee, C.H., Reitz, R.D.: An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. Int. J. Multiphase Flow 26(2), 229–244 (2000)zbMATHCrossRefGoogle Scholar
  34. 43.
    Hwang, S., Liu, S., Reitz, R.D.: Breakup mechanisms and drag coefficients of high speed vaporizing drops. Atomiz. Sprays 6(3), 353–376 (1996)Google Scholar
  35. 44.
    Wert, K.: A rationally-based correlation of mean fragment size for drop secondary breakup. Int. J. Multiphase Flow 21(6), 1063–1071 (1995)zbMATHCrossRefGoogle Scholar
  36. 45.
    Pilch, M., Erdman, C.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiphase Flow 13(6), 741–757 (1987)CrossRefGoogle Scholar
  37. 46.
    Ng, C.L., Sankarakrishnan, R., Sallam, K.A.: Bag breakup of nonturbulent liquid jets in crossflow. Int. J. Multiphase Flow 34(3), 241–259 (2008)CrossRefGoogle Scholar
  38. 47.
    Damsohn, M., Prasser, H.: High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance. Flow Meas. Instrum. 20(1), 1–14 (2009)CrossRefGoogle Scholar
  39. 48.
    Schlichting, H., Gersten, K., Krause, E., Oertel Jr., H.: Grenzschicht-Theorie, 10th edn. Springer, Berlin Heidelberg (2006)Google Scholar
  40. 49.
    Villermaux, E., Bossa, B.: Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5(9), 697–702 (2009)CrossRefGoogle Scholar
  41. 50.
    Chandrasekhar, S.: Hydrodynamik and Hydromagnetic Stability. Dover Publications, New York (1981)Google Scholar
  42. 51.
    Duke, D., Honnery, D., Soria, J.: Experimental investigation of nonlinear instabilities in annular liquid sheets. J. Fluid Mech. 691, 594–604 (2012)zbMATHCrossRefGoogle Scholar
  43. 52.
    Gepperth, S., Guildenbecher, D., Koch, R., Bauer, H.-J.: Pre-filming Primary Atomization: Experiments and Modeling. ILASS Europe, Brno (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Aerodynamics, Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Center of Smart Interfaces, Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations