Skip to main content

Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika

  • JELLYFISH BLOOMS
  • Chapter
  • First Online:
Jellyfish Blooms IV

Part of the book series: Developments in Hydrobiology ((DIHY,volume 220))

Abstract

Medusae are important members of marine food webs, but are rare in lakes. In one of the largest lakes in the world, Lake Tanganyika, a small medusa (Limnocnida tanganyicae) is a prominent component of zooplankton. We used field and laboratory methods to study the ecological role of Lake Tanganyika medusae, which occasionally reached high local densities in the whole epilimnion. The largest individuals showed low amplitude, diel vertical migration which minimized their exposure to harmful UV radiation and also may be important for picocyanobacteria regularly present in the medusae. The endosymbiotic picocyanobacteria differed morphologically among medusae and were predominantly one Lake Biwa type Cyanobium sp. that typically was abundant in the water column. Under light, some medusae were net primary producers. Although nitrogen stable isotopic ratios indicated that the free-living cyanobacteria were nitrogen-fixers, the picocyanobacteria in medusae obtained nitrogen predominantly from their host. Stable isotopic ratios of carbon and nitrogen further suggested that copepods were the most likely prey for the medusae. Lake Tanganyika medusae apparently base their metabolism both on animal and plant sources, with possible internal cycling of nutrients; however, the role of picocyanobacteria gardening in the Lake Tanganyika ecosystem and its medusae requires quantification.

Guest editors: J. E. Purcell, H. Mianzan & J. R. Frost / Jellyfish Blooms: Interactions with Humans and Fisheries

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bosma E. M., S. Muhoza & I. Zulu, 1998. The gulf net sample results of five cruises with the R/V Tanganyika Explorer. FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/81 (En): 24.

    Google Scholar 

  • Bouillon, J., 1954. A hydropolyp in the biological cycle of a freshwater jellyfish. Nature 174: 1112.

    Article  Google Scholar 

  • Boulenger, C. L., 1911. On some points in the anatomy and bud-formation of Limnocnida tanganicæ. Quarterly Journal of Microscopic Sciences 57: 83–106.

    Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift system. Geology 21: 511–514.

    Article  CAS  Google Scholar 

  • Coulter, G. W., 1991. Lake Tanganyika and its Life. British Museum, Natural History & Oxford University Press, London. 354.

    Google Scholar 

  • Coulter, G. W., 1994. Lake Tanganyika. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Advances in Limnology, 44: 13–18.

    Google Scholar 

  • Coulter, G. W. & R. H. Spigel, 1991. Hydrodynamics. In Coulter, G. W. (ed.), Lake Tanganyika and its Life. Oxford University Press, London: 49–75.

    Google Scholar 

  • Crosbie, N. D., M. Pockl & T. Weisse, 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Applied and Environmental Microbiology 69: 5716–5721.

    Article  PubMed  CAS  Google Scholar 

  • De Wever, A., K. Muylaert, D. Langlet, L. Alleman, J.-P. Descy, L. Andre, C. Cocquyt & W. Vyverman, 2008a. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshwater Biology 53: 264–277.

    Google Scholar 

  • De Wever, A., K. Van der Gucht, K. Muylaert, S. Cousin & W. Vyverman, 2008b. Clone library analysis reveals an unusual composition and strong habitat partitioning of pelagic bacterial communities in Lake Tanganyika. Aquatic Microbial Ecology 50: 113–122.

    Article  Google Scholar 

  • Dodson, S. I. & S. D. Cooper, 1983. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnology and Oceanography 28: 345–351.

    Article  Google Scholar 

  • Dumont, H. J., 1994a. The distribution and ecology of fresh- and brackish-water medusae of the world. Hydrobiologia 272: 1–12.

    Article  Google Scholar 

  • Dumont, H. J., 1994b. Ancient lakes have simplified pelagic food webs. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 44: 223–234.

    Google Scholar 

  • Ernst, A., S. Becker, U. I. A. Wollenzien & C. Postius, 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Erwin, P. M. & R. W. Thacker, 2008. Phototrophic nutrition and symbiont diversity of two Caribbean sponge–cyanobacteria symbioses. Marine Ecology Progress Series 362: 139–147.

    Article  CAS  Google Scholar 

  • France, R. L. & R. H. Peters, 1997. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Canadian Journal of Fisheries and Aquatic Science 54: 1255–1258.

    Article  Google Scholar 

  • Goy, J., 1977. Sur les Limnocnida africaines (Cnidaires: Limnoméduses). Bulletin de l’Institut francais d’Afrique Noire, série A 39: 563–582.

    Google Scholar 

  • Green, J., 1998. Plankton associated with medusae of the freshwater jellyfish Craspedacusta sowerbyi (Lankester) in a Thames backwater. Freshwater Forum 11: 69–76.

    Google Scholar 

  • Hamner, W. H., R. W. Gilmer & P. P. Hamner, 1982. The physical, chemical and biological characteristics of a stratified, saline sulfide lake in Palau. Limnology and Oceanography 27: 896–909.

    Article  CAS  Google Scholar 

  • Hofmann, D. K. & B. P. Kremer, 1981. Carbon metabolism and strobilation of Cassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates. Marine Biology 65: 25–33.

    Article  CAS  Google Scholar 

  • Hylander, S. & L.-A. Hansson, 2010. Vertical migration mitigates UV effects on zooplankton community composition. Journal of Plankton Research 32: 971–980.

    Article  CAS  Google Scholar 

  • Jankowski, T., 2000. Chemical composition and biomass parameters of a population of Craspedacusta sowerbii Lank 1880 (Cnidaria: Limnomedusa). Journal of Plankton Research 22: 1329–1340.

    Article  CAS  Google Scholar 

  • Jankowski, T., 2001. The freshwater medusae of the world—a taxonomic and systematic literature study with some remarks on other inland water jellyfish. Hydrobiologia 462: 91–113.

    Google Scholar 

  • Jankowski, T., T. Strauss & H. T. Ratte, 2005. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. Journal of Plankton Research 27: 811–823.

    Article  CAS  Google Scholar 

  • Kremer, P., J. Costello, J. Kremer & M. Canino, 1990. Significance of photosynthetic endosymbionts to the carbon budget of the scyphomedusa Linuche unquiculata. Limnology and Oceanography 35: 609–624.

    Article  CAS  Google Scholar 

  • Kurki, H., 1998. Results of plankton net and torpedo sampling during cruises on board R/V Tanganyika Explorer. FAO/FINNIDA Research for the management of the fisheries on Lake Tanganyika, GCP/RAF/271/FIN-TD/85 (En): 33.

    Google Scholar 

  • Kurki, H., P. Mannini, I. Vuorinen, E. Aro, H. Mölsä & O. V. Lindqvist, 1999. Macrozooplankton communities in Lake Tanganyika indicate food chain differences between the northern part and the main basins. Hydrobiologia 407: 123–129.

    Article  Google Scholar 

  • Langenberg, V. T., J. Sarvala & R. Roijackers, 2003. Effect of wind induced water movements on nutrients, chlorophyll-a, and primary production in Lake Tanganyika. Aquatic Ecosystem Health & Management 6: 279–288.

    Article  CAS  Google Scholar 

  • Langenberg, V. T., J.-M. Tumba, K. Tshibangu, C. Lukwesa, D. Chitamwebwa, D. Bwebwa, L. Makasa & R. Roijackers, 2008. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika. Aquatic Ecosystem Health & Management 11: 16–28.

    Article  CAS  Google Scholar 

  • Lesser, M. P., C. H. Mazel, M. Y. Gorbunov & P. Falkowski, 2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305: 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology 119: 13–22.

    Article  Google Scholar 

  • McCutchan, J. H., W. M. Lewis Jr., C. Kendall & C. C. McGarth, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnology and Oceanography 27: 910–917.

    Article  CAS  Google Scholar 

  • Muscatine, L., F. P. Wilkerson & L. R. McCloskey, 1986. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Marine Ecology Progress Series 32: 279–290.

    Article  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.

    Article  CAS  Google Scholar 

  • Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.

    Article  CAS  Google Scholar 

  • Plisnier, P. D., D. Chitamwebwa, L. M. Mwape, K. Tshibangu, V. T. Langenberg & E. Coenen, 1999. Limnological annual cycle inferred from physico-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58.

    Article  CAS  Google Scholar 

  • Rantakokko-Jalava, K., S. Nikkari, J. Jalava, E. Eerola, M. Skurnik, O. Meurman, O. Ruuskanen, A. Alanen, E. Kotilainen, P. Toivanen & P. Kotilainen, 2000. Direct amplification of rRNA genes in diagnosis of bacterial infections. Journal of Clinical Microbiology 38: 32–39.

    PubMed  CAS  Google Scholar 

  • Rayner, N. A. & C. C. Appleton, 1989. Occurrence of introduced Craspedacusta sowerbii and indigenous Limnocnida tanganjicae (Cnidaria: Limnomedusae) in Southern Africa. Environmental Conservation 16: 267–270.

    Article  Google Scholar 

  • Rhode, S. C., M. Pawlowski & R. Tollrian, 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Rumpho, M. E., K. N. Pelletreau, A. Moustafa & D. Bhattacharya, 2011. The making of a photosynthetic animal. Journal of Experimental Biology 214: 303–311.

    Article  PubMed  Google Scholar 

  • Sarvala, J., K. Salonen, M. Järvinen, E. Aro, T. Huttula, P. Kotilainen, H. Kurki, V. Langenberg, P. Mannini, P.-D. Plisnier, I. Vuorinen, H. Mölsä & O. V. Lindqvist, 1999. Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407: 149–173.

    Article  Google Scholar 

  • Sarvala, J., S. Badende, D. Chitamwebwa, P. Juvonen, L. Mwape, H. Mölsä, N. Mulimbwa, K. Salonen, M. Tarvainen & K. Vuorio, 2003. Size-fractionated δ15N and δ13C isotope ratios elucidate the role of the microbial food web in the pelagial of Lake Tanganyika. Aquatic Ecosystem Health & Management 6: 241–250.

    Article  CAS  Google Scholar 

  • Schuyler, Q. & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research 19: 1417–1428.

    Article  Google Scholar 

  • Sharma, J. G. & R. Chakrabarti, 2000. Seasonal occurrence of freshwater medusa Limnocnida indica annandale (Cnidaria: Limnomedusae) in a lake associated with the river Yamuna, India. Aquatic Ecology 34: 205–207.

    Article  Google Scholar 

  • Smith, A. S. & J. E. Alexander Jr., 2008. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. Journal of Plankton Research 30: 1323–1327.

    Article  Google Scholar 

  • Stefani, F., B. Leoni, A. Marieni & L. Garibaldi, 2010. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in Northern Italy. Journal of Limnology 69: 189–192.

    Article  Google Scholar 

  • Stenuite, S., A.-L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J.-P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31: 1531–1544.

    Article  CAS  Google Scholar 

  • Tiercelin, J. & A. Mondeguer, 1990. The geology of the Tanganyika Trough. In Coulter, G. (ed.), Lake Tanganyika and its Life. Oxford University Press, London: 7–48.

    Google Scholar 

  • Tiirola, M. A., M. K. Männistö, J. A. Puhakka & M. S. Kulomaa, 2002a. Isolation and characterization of Novosphingobium sp. MT1, a dominant polychlorophenol degrading strain in a groundwater bioremediation system. Applied and Environmental Microbiology 68: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Tiirola, M., E. T. Valtonen, P. Rintamäki-Kinnunen & M. Kulomaa, 2002b. Diagnosis of flavobacteriosis by direct amplification of rRNA genes. Diseases of Aquatic Organisms 51: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Tiirola, M. A., J. E. Suvilampi, M. S. Kulomaa & J. A. Rintala, 2003. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water Research 37: 2259–2268.

    Article  PubMed  CAS  Google Scholar 

  • Todd, B. D., D. J. Thornhill & W. K. Fitt, 2006. Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Marine Pollution Bulletin 52: 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Trench, R. K., 1993. Microalgal-invertebrate symbiosis: a review. Endocytosis Cell Research 9: 135–175.

    Google Scholar 

  • Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.

    Article  PubMed  Google Scholar 

  • Viherluoto, M., 1999. The food utilisation and diel feeding pattern of shrimps (Atyidea and Palaemonidea) in Lake Tanganyika. In Mölsä, H., K. Salonen & J. Sarvala (eds), Results of the LTR’s 20th Multi-Disciplinary Cruise. FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/93 (En): 96.

    Google Scholar 

  • Vuorio, K., M. Nuottajärvi, K. Salonen & J. Sarvala, 2003. Spatial distribution of phytoplankton and picocyanobacteria in Lake Tanganyika, in March–April 1998. Aquatic Ecosystem Health & Management 6: 268–278.

    Article  Google Scholar 

  • Vuorio, K., M. Meili & J. Sarvala, 2006. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51: 807–822.

    Article  CAS  Google Scholar 

  • Williamson, C. E., 1995. What role does UV-B radiation play in freshwater ecosystems? Limnology and Oceanography 40: 386–392.

    Article  Google Scholar 

  • Woolridge, S. A., 2010. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32: 615–625.

    Article  Google Scholar 

  • Yellowlees, D., T. A. V. Rees & W. Leggat, 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell and Environment 31: 679–694.

    Article  PubMed  CAS  Google Scholar 

  • Zagarese, H. E., M. Feldman & C. E. Williamson, 1997. UV-B-induced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida). Journal of Plankton Research 19: 357–367.

    Article  Google Scholar 

Download references

Acknowledgments

This study was a part of the FAO/FINNIDA Lake Tanganyika Research Project GCP/RAF/271/FIN “Research for the Management of the Fisheries on Lake Tanganyika (LTR)”. Additional funding was received from the Academy of Finland (Grants 44130, 52271 and 201414), the University of Turku Foundation and the Universities of Turku, Kuopio and Jyväskylä, Finland. We also thank Jitka Jezberova and David Fewer for commenting the picocyanobacterial systematics, and the reviewers and editors for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalevi Salonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Salonen, K. et al. (2012). Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika. In: Purcell, J., Mianzan, H., Frost, J.R. (eds) Jellyfish Blooms IV. Developments in Hydrobiology, vol 220. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5316-7_8

Download citation

Publish with us

Policies and ethics