Synthesis and Spectroscopy of Nanoparticles

  • Alexander P. Voitovich
  • G. E. Malashkevich
  • N. V. Tarasenko
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


A lattice period of crystalline inorganic solids lies typically in the range 0.5–1.0 nm. The processes involved in the electron subsystem of solids determine their optical and other characteristics. The quantum dimensional effects are caused, when even one of the geometrical sizes of solids becomes commensurable with the de Broglie wavelength of an electron, a hole or an exciton. In this case the spatial confinement of these waves in solids takes place. For instance, in CdSe crystal at room temperature, de Broglie wavelengths are equal 5.3, 4.35 and 1.25 nm for an exciton, an electron and a hole accordingly. As we see, the lengths of de Broglie waves for particles in crystals lay in a nanometers range. Therefore, the objects, for which quantum dimensional effects are typical, should have sizes of the nanometers order. In this connection, about such objects they usually speak as about nanostructures or nanomaterials. The electron confinement results in size-dependent absorption spectra, emission spectra and transition probabilities in solids. In recent years, in view of the prospects of practical applications, increasing attention is paid to the development of methods for synthesizing nanostructures and studying their physicochemical properties.


Laser Ablation Zinc Oxide Pulse Laser Ablation CeO2 Nanoparticles Cadmium Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244:3027–3073ADSCrossRefGoogle Scholar
  2. 2.
    Burakov VS, Tarasenko NV, Nevar EA, Nedelko MI (2011) Morphology and optical properties of zinc oxide nanostructures synthesized by the methods of thermal and discharge sputtering. Tech Phys 56:245–253CrossRefGoogle Scholar
  3. 3.
    Umar A, Kim SH, Suh E-K, Hahn YB (2007) Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: growth mechanism, structural and optical properties. Chem Phys Lett 440:110–115ADSCrossRefGoogle Scholar
  4. 4.
    Ho GW, Wong ASW, Kang DJ, Welland ME (2007) One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires. J Appl Phys A 86:457–462ADSCrossRefGoogle Scholar
  5. 5.
    Shafeev GA (2008) Laser-based formation of nanoparticles. In: Lackner M (ed) Lasers in chemistry, vol 1: probing matter. Wiley VCH Verlag, Wienheim, pp 713–741Google Scholar
  6. 6.
    Kabashin AV, Meunier M (2006) Laser ablation-based synthesis of nanomaterials. In: Perriere J, Millon E, Fogarassi E (eds) Recent advances in laser processing of advanced materials. Elsevier, Amsterdam, pp 1–36Google Scholar
  7. 7.
    Bogaerts A, Chen Z, Gijbels R, Vertes A (2003) Laser ablation for analytical sampling: what can we learn from modeling? Spectrochim Acta B 58:1867–1893ADSCrossRefGoogle Scholar
  8. 8.
    Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698CrossRefGoogle Scholar
  9. 9.
    Tarasenko NV, Butsen AV (2010) Laser synthesis and modification of composite nanoparticles in liquids. Quantum Electron 40:986–1003ADSCrossRefGoogle Scholar
  10. 10.
    Burakov VS, Tarasenko NV, Nedelko MI, Isakov SN (2008) Time-resolved spectroscopy and imaging diagnostics of single pulse and collinear double pulse laser induced plasma from a glass sample. Spectrochim Acta B 63:19–26ADSCrossRefGoogle Scholar
  11. 11.
    Sakka T, Saito K, Ogata YH (2005) Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission. J Appl Phys 97:014902ADSCrossRefGoogle Scholar
  12. 12.
    Liang CH, Shimizu Y, Sasaki T, Koshizaki N (2005) Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution. J Appl Phys A 80:819–822ADSCrossRefGoogle Scholar
  13. 13.
    Burakov VS, Tarasenko NV, Butsen AV, Rozantsev VA, Nedelko MI (2005) Formation of nanoparticles during double-pulse laser ablation of metals in liquids. Eur Phys J Appl Phys 30:107–113CrossRefGoogle Scholar
  14. 14.
    Boren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  15. 15.
    Compagnini G, Messina E, Puglisi O, Nicolosi V (2007) Laser synthesis of Au/Ag colloidal nano-alloys: exploring the optical properties for an accurate analysis. Appl Surf Sci 254:1007–1011ADSCrossRefGoogle Scholar
  16. 16.
    Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744CrossRefGoogle Scholar
  17. 17.
    Zeng HB, Cai WP, Li Y (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B 109:18260–18266CrossRefGoogle Scholar
  18. 18.
    Liang CY, Shimizu T, Sasaki N, Koshizaki M (2003) Synthesis of ultrafine SnO2-x nanocrystals by pulsed laser-induced reactive quenching in liquid medium. J Phys Chem B 107:9220–9225CrossRefGoogle Scholar
  19. 19.
    Bajaj G, Soni RK (2010) Synthesis of composite gold/tin-oxide nanoparticles by nano-soldering. J Nanoparticle Res 12:2597–2603CrossRefGoogle Scholar
  20. 20.
    Nevar EA, Savastenko NA, Bryuzer V, Lopatik DA, May F, Butsen AV, Tarasenko NV, Burakov VS (2010) Plasma synthesis and treatment of nanosized chalcopyrite particles. J Appl Spectrosc 77:136–141ADSCrossRefGoogle Scholar
  21. 21.
    Tarasenko NV, Butsen AV, Nevar EA (2008) Laser ablation of gadolinium targets in liquids for nanoparticle preparation. J Appl Phys A 93:837–841ADSCrossRefGoogle Scholar
  22. 22.
    Li Y, Xu G, Zhu YL, Ma XL, Cheng HM (2007) SnO2/In2O3 one-dimensional nano-core-shell structures: synthesis, characterization and photoluminescence properties. Solid State Commun 142:441–444ADSCrossRefGoogle Scholar
  23. 23.
    Usui H, Shimizu Y, Sasaki T (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124CrossRefGoogle Scholar
  24. 24.
    Bohigas X, Molins E, Roig A, Tegada J, Zhang XX (2000) Room-temperature magnetic refrigerator using permanent magnets. IEEE Trans Magn 36:538–544ADSCrossRefGoogle Scholar
  25. 25.
    Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  26. 26.
    Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561CrossRefGoogle Scholar
  27. 27.
    Tsuji T, Okazaki Y, Higuchi T, Tsuji M (2003) Laser induced morphology change of silver colloids: formation of nano-size wires. Appl Surf Sci 211:189–193ADSCrossRefGoogle Scholar
  28. 28.
    Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232CrossRefGoogle Scholar
  29. 29.
    Tarasenko NV, Butsen AV, Nevar EA, Savastenko NA (2006) Synthesis of nanosized particles during laser ablation of gold in water. Appl Surf Sci 252:4439–4444ADSCrossRefGoogle Scholar
  30. 30.
    Burda C (2000) Optical spectroscopy of nanophase material. In: Wang ZL (ed) Characterization of nanophase materials. Wiley-VCH Verlag, Wienheim, p 197Google Scholar
  31. 31.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163CrossRefGoogle Scholar
  32. 32.
    Malashkevich GE, Poddenezhny EN, Melnichenko IM, Semchenko AV (1998) Luminescence spectral properties of Sm- and (Ce, Sm)-containing silica gel glasses. Phys Solid State 40:420–426ADSCrossRefGoogle Scholar
  33. 33.
    Malashkevich GE, Makhanek AG, Semchenko AV, Gaishun VE, Melnichenko IM, Poddenezhny EN (1999) Luminescence-spectral properties and structure of optical centers in Eu- and Ce–Eu-containing quartz gel-glasses. Phys Solid State 41:202–207ADSCrossRefGoogle Scholar
  34. 34.
    Malashkevich GE, Poddenezhny EN, Melnichenko IM, Boiko AA (1995) Optical centers of cerium in silica glasses obtained by the sol–gel process. J Non-Cryst Solid 188:107–117ADSCrossRefGoogle Scholar
  35. 35.
    Malashkevich GE, Sigaev VN, Semkova GI, Champagnon B (2004) Nanocrystalline nature of high-symmetry Ce4+–Eu3+ centers in silica gel glasses. Phys Solid State 46:552–556ADSCrossRefGoogle Scholar
  36. 36.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  37. 37.
    Malashkevich GE, Lapina VA, Semkova GI, Pershukevich PP, Shevchenko GP (2003) Luminescence of Eu3+ ions in ultra disperse diamond powders. JETP Lett 77:291–294ADSCrossRefGoogle Scholar
  38. 38.
    Hayakawa T, Nogami M (2001) Energy migration of the local excitation at the Eu3+ site in a Eu-O chemical cluster in sol–gel derived SiO2:Eu3+ glasses. J Appl Phys 90:2200–2205ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander P. Voitovich
    • 1
  • G. E. Malashkevich
    • 1
  • N. V. Tarasenko
    • 1
  1. 1.Institute of PhysicsNational Academy of SciencesMinskBelarus

Personalised recommendations