Nanophotonics: Linear and Nonlinear Optics at the Nanoscale

  • Christopher C. Evans
  • Eric Mazur
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Light propagation in sub-wavelength waveguides enables tight confinement over long propagation lengths to enhance nonlinear optical interactions. Not only can sub-wavelength waveguides compress light spatially, they also provide a tunable means to control the spreading of light pulses in time, producing significant effects even for nanojoule pulse energies. By exploring linear and nonlinear light propagation, first for free-space conditions, then for sub-wavelength guided conditions, we demonstrate how sub-wavelength structure can enhance nonlinear optics at the nanoscale. We demonstrate key applications including wavelength generation and all-optical modulation. Lastly, we show how to assemble these devices to form all-optical logic gates.


Group Velocity Dispersion Nonlinear Phase Evanescent Field Nonlinear Polarization Nonlinear Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Orad Reshef and Lili Jiang for their insightful discussions and helpful comments on this manuscript.


  1. 1.
    Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddler River, p xv, 576 pGoogle Scholar
  2. 2.
    Hunsperger RG (2009) Integrated optics: theory and technology, 6th edn, Advanced texts in physics. Springer, New York, p xxviii, 513 pGoogle Scholar
  3. 3.
    Haus HA (1984) Waves and fields in optoelectronics, Prentice-Hall series in solid state physical electronics. Prentice-Hall, Englewood Cliffs, p xii, 402 pGoogle Scholar
  4. 4.
    Application note: prism compressor for ultrashort laser pulses (Newport Corporation, 2006). Retrieved 21 May 2012.
  5. 5.
    Boyd RW (2008) Nonlinear optics, 3rd edn. Academic, Amsterdam/Boston, p xix, 613 pGoogle Scholar
  6. 6.
    Chen JM, Bower JR, Wang CS, Lee CH (1973) Optical second-harmonic generation from submonolayer Na-covered Ge surfaces. Opt Commun 9:132–134ADSCrossRefGoogle Scholar
  7. 7.
    Shen YR (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–525ADSCrossRefGoogle Scholar
  8. 8.
    Boyd RW (2003) Nonlinear optics, 2nd edn. Academic, San Diego, p xvii, 578 pGoogle Scholar
  9. 9.
    Agrawal GP (2007) Nonlinear fiber optics, 4th edn, Quantum electronics--principles and applications. Elsevier/Academic Press, Amsterdam/Boston, p xvi, 529 pGoogle Scholar
  10. 10.
    Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. Quantum Electron IEEE J 26:760–769ADSCrossRefGoogle Scholar
  11. 11.
    Stryland EWV, Sheik-Bahae M (1998) Z-scan measurements of optical nonlinearities. In: Kuzyk MG, Dirk CW (eds) Characterization techniques and tabulations for organic nonlinear optical materials. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Stegeman GI, Wright EM, Finlayson N, Zanoni R, Seaton CT (1988) Third order nonlinear integrated optics. Lightwave Technol J 6:953–970ADSCrossRefGoogle Scholar
  13. 13.
    Stegeman GI (1993) Material figures of merit and implications to all-optical waveguide switching. SPIE 1852:75–89ADSCrossRefGoogle Scholar
  14. 14.
    Stegeman GI, Torruellas WE (1996) Nonlinear materials for information processing and communications. Philos Trans Math Phys Eng Sci 354:745–756ADSCrossRefGoogle Scholar
  15. 15.
    Lin Q, Zhang J, Piredda G, Boyd RW, Fauchet PM, Agrawal GP (2007) Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett 91:021111ADSCrossRefGoogle Scholar
  16. 16.
    Vilson RA, Carlos AB, Roberto RP, Michal L, Mark AF, Dimitre GO, Alexander LG (2004) All-optical switch on a Silicon chip. In: Proceedings of the Conference on lasers and electro-optics/international quantum electronics conference and photonic applications systems technologies, technical digest (CD), Optical Society of America, CTuFF3Google Scholar
  17. 17.
    Saleh BEA, Teich MC (2007) Fundamentals of photonics, 2nd edn, Wiley series in pure and applied optics. Wiley-Interscience, Hoboken, p xix, 1177 pGoogle Scholar
  18. 18.
    Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York, p xxi, 808 pzbMATHGoogle Scholar
  19. 19.
    Gloge D (1971) Dispersion in weakly guiding fibers. Appl Opt 10:2442–2445ADSCrossRefGoogle Scholar
  20. 20.
    Marcuse D (1979) Interdependence of waveguide and material dispersion. Appl Opt 18:2930–2932ADSCrossRefGoogle Scholar
  21. 21.
    Tong L, Gattass RR, Ashcom JB, He S, Lou J, Shen M, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819ADSCrossRefGoogle Scholar
  22. 22.
    Tong LM, Lou JY, Ye ZZ, Svacha GT, Mazur E (2005) Self-modulated taper drawing of silica nanowires. Nanotechnology 16:1445–1448CrossRefGoogle Scholar
  23. 23.
    Svacha G (2008) Nanoscale nonlinear optics using silica nanowires. Harvard University, Cambridge, MAGoogle Scholar
  24. 24.
    Tong L, Lou J, Gattass RR, He S, Chen X, Liu L, Mazur E (2005) Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 5:259–262ADSCrossRefGoogle Scholar
  25. 25.
    Foster MA, Moll KD, Gaeta AL (2004) Optimal waveguide dimensions for nonlinear interactions. Opt Expr 12:2880–2887ADSCrossRefGoogle Scholar
  26. 26.
    Huang KJ, Yang SY, Tong LM (2007) Modeling of evanescent coupling between two parallel optical nanowires. Appl Opt 46:1429–1434ADSCrossRefGoogle Scholar
  27. 27.
    Voss T, Svacha GT, Mazur E, Müller S, Ronning C, Konjhodzic D, Marlow F (2007) High-order waveguide modes in ZnO nanowires. Nano Lett 7:3675–3680ADSCrossRefGoogle Scholar
  28. 28.
    Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media. Sov Phys JETP 34:62MathSciNetADSGoogle Scholar
  29. 29.
    Hardin RH, Tappert FD (1973) Numerical solutions of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method. SIAM Rev Chron 15:423Google Scholar
  30. 30.
    Fisher RA, Bischel W (1973) The role of linear dispersion in plane-wave self-phase modulation. Appl Phys Lett 23:661–663ADSCrossRefGoogle Scholar
  31. 31.
    Agrawal GP (2001) Applications of nonlinear fiber optics, Optics and photonics. Academic, San Diego, p xiv, 458 pGoogle Scholar
  32. 32.
    Paschotta R (2008) Encyclopedia of laser physics and technology. Wiley-VCH, WeinheimGoogle Scholar
  33. 33.
    Hasegawa A, Kodama Y (1981) Signal transmission by optical solitons in monomode fiber. Proc IEEE 69:1145–1150ADSCrossRefGoogle Scholar
  34. 34.
    Blow KJ, Doran NJ (1983) Bandwidth limits of nonlinear (soliton) optical communication systems. Electron Lett 19:429–430CrossRefGoogle Scholar
  35. 35.
    Trillo S, Wabnitz S, Wright EM, Stegeman GI (1988) Soliton switching in fiber nonlinear directional couplers. Opt Lett 13:672ADSCrossRefGoogle Scholar
  36. 36.
    Blow KJ, Doran NJ, Nayar BK (1989) Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Opt Lett 14:754–756ADSCrossRefGoogle Scholar
  37. 37.
    Islam MN, Sunderman ER, Stolen RH, Pleibel W, Simpson JR (1989) Soliton switching in a fiber nonlinear loop mirror. Opt Lett 14:811–813ADSCrossRefGoogle Scholar
  38. 38.
    Adair R, Chase LL, Payne SA (1989) Nonlinear refractive index of optical crystals. Phys Rev B 39:3337ADSCrossRefGoogle Scholar
  39. 39.
    Leon-Saval S, Birks T, Wadsworth W, Russell PSJ, Mason M (2004) Supercontinuum generation in submicron fibre waveguides. Opt Expr 12:2864–2869ADSCrossRefGoogle Scholar
  40. 40.
    Gattass RR, Svacha GT, Tong LM, Mazur E (2006) Supercontinuum generation in submicrometer diameter silica fibers. Opt Expr 14:9408–9414ADSCrossRefGoogle Scholar
  41. 41.
    Sakamaki K, Nakao M, Naganuma M, Izutsu M (2004) Soliton induced supercontinuum generation in photonic crystal fiber. Sel Top Quantum Electron IEEE J 10:876–884CrossRefGoogle Scholar
  42. 42.
    Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight JC, Wadsworth WJ, Russell PSJ, Korn G (2002) Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys Rev Lett 88:173901ADSCrossRefGoogle Scholar
  43. 43.
    Cristiani I, Tediosi R, Tartara L, Degiorgio V (2004) Dispersive wave generation by solitons in microstructured optical fibers. Opt Expr 12:124–135ADSCrossRefGoogle Scholar
  44. 44.
    Tartara L, Cristiani I, Degiorgio V (2003) Blue light and infrared continuum generation by soliton fission in a microstructured fiber. Appl Phys B Laser Opt 77:307–311ADSCrossRefGoogle Scholar
  45. 45.
    Teipel J, Franke K, Türke D, Warken F, Meiser D, Leuschner M, Giessen H (2003) Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses. Appl Phys B Laser Opt 77:245–251ADSCrossRefGoogle Scholar
  46. 46.
    Otsuka K (1983) Nonlinear antiresonant ring interferometer. Opt Lett 8:471–473MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Mortimore DB (1988) Fiber loop reflectors. Lightwave Technol J 6:1217–1224ADSCrossRefGoogle Scholar
  48. 48.
    Doran NJ, Forrester DS, Nayar BK (1989) Experimental investigation of all-optical switching in fibre loop mirror device. Electron Lett 25:267–269CrossRefGoogle Scholar
  49. 49.
    Huang A, Whitaker N, Avramopoulos H, French P, Houh H, Chuang I (1994) Sagnac fiber logic gates and their possible applications: a system perspective. Appl Opt 33:6254–6267ADSCrossRefGoogle Scholar
  50. 50.
    Jinno M, Matsumoto T (1992) Nonlinear Sagnac interferometer switch and its applications. Quantum Electron IEEE J 28:875–882ADSCrossRefGoogle Scholar
  51. 51.
    Cotter D, Manning RJ, Blow KJ, Ellis AD, Kelly AE, Nesset D, Phillips ID, Poustie AJ, Rogers DC (1999) Nonlinear optics for high-speed digital information processing. Science 286:1523–1528CrossRefGoogle Scholar
  52. 52.
    Doran NJ, Wood D (1988) Nonlinear-optical loop mirror. Opt Lett 13:56–58ADSCrossRefGoogle Scholar
  53. 53.
    Uchiyama K, Takara H, Kawanishi S, Morioka T, Saruwatari M, Kitoh T (1993) 100 Gbit/s all-optical demultiplexing using nonlinear optical loop mirror with gating-width control. Electron Lett 29:1870–1871CrossRefGoogle Scholar
  54. 54.
    Asobe M, Ohara T, Yokohama I, Kaino T (1996) Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre. Electron Lett 32:1396–1397CrossRefGoogle Scholar
  55. 55.
    Jiun-Haw L, Ding-An W, Hsin-Jiun C, Ding-Wei H, Gurtler S, Yang CC, Yean-Woei K, Chen BC, Shih MC, Chuang TJ (1999) Nonlinear switching in an all-semiconductor-optical-amplifier loop device. Photon Technol Lett IEEE 11:236–238ADSCrossRefGoogle Scholar
  56. 56.
    Pelusi MD, Matsui Y, Suzuki A (1999) Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror. Quantum Electron IEEE J 35:867–874ADSCrossRefGoogle Scholar
  57. 57.
    Bogoni A, Scaffardi M, Ghelfi P, Poti L (2004) Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing. Sel Top Quantum Electron IEEE J 10:1115–1123CrossRefGoogle Scholar
  58. 58.
    Pottiez O, Kuzin EA, Ibarra-Escamilla B, Camas-Anzueto JT, Gutierrez-Zainos F (2004) Experimental demonstration of NOLM switching based on nonlinear polarisation rotation. Electron Lett 40:892–894CrossRefGoogle Scholar
  59. 59.
    Simova E, Golub I, Picard M-J (2005) Ring resonator in a Sagnac loop. J Opt Soc Am B 22:1723–1730ADSCrossRefGoogle Scholar
  60. 60.
    Sumetsky M (2005) Optical microfiber loop resonator. Appl Phys Lett 86:161108ADSCrossRefGoogle Scholar
  61. 61.
    Jinno M, Matsumoto T (1991) Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams. Opt Lett 16:220–222ADSCrossRefGoogle Scholar
  62. 62.
    Miyoshi Y, Ikeda K, Tobioka H, Inoue T, Namiki S, Kitayama K- (2008) Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt Expr 16:2570–2577ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations