Imprint-Templated Nanocoax Array Architecture: Fabrication and Utilization

  • B. Rizal
  • F. Ye
  • P. Dhakal
  • T. C. Chiles
  • S. Shepard
  • G. McMahon
  • M. J. Burns
  • Michael J. Naughton
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Arrays of vertically-oriented cylindrical, coaxial and triaxial nanostructures are fabricated from polymer nanopillar arrays prepared by nanoimprint lithography. With particular process modifications, these arrays have wide potential utility, including as molecular-scale biological (biomarker, pathogen, etc.) and chemical (explosives, environmental agents, etc.) sensors, high density neuroelectronic interfaces and retinal prostheses, radial junction photovoltaic solar cells, ultracapacitors, and optical metastructures. We report on their fabrication and example utilizations in the latter of these areas, with arrays of typical area density 106 mm−2.


Atomic Layer Deposition Nanowire Array Plasma Enhance Chemical Vapor Deposition Nanoimprint Lithography Retinal Prosthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the W.M. Keck Foundation and the US National Cancer Institute.


  1. 1.
    Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69ADSCrossRefGoogle Scholar
  2. 2.
    Naughton MJ, Kempa K, Ren ZF, Gao Y, Rybczynski J, Argenti N, Gao W, Wang Y, Peng Y, Naughton JR, McMahon G, Paudel T, Lan YC, Burns MJ, Shepard A, Clary M, Ballif C, Haug F-J, Söderström T, Cubero O, Eminian C (2010) Efficient nanocoax-based solar cells. Phys Status Solidi Rapid Res Lett 4:181–183ADSCrossRefGoogle Scholar
  3. 3.
    Paudel T, Rybczynski J, Gao YT, Lan YC, Peng Y, Kempa K, Naughton MJ, Ren ZF (2011) Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays. Phys Status Solidi A 208:924–927ADSCrossRefGoogle Scholar
  4. 4.
    Sirbuly DJ, Law M, Yan J, Yang P (2005) Semiconductor nanowires for subwavelength photonics integration. J Phys Chem B 109:1519–15213CrossRefGoogle Scholar
  5. 5.
    Rybczynski J, Kempa K, Herczenski A, Wang Y, Naughton MJ, Ren ZF, Haung ZP, Cai D, Giersig M (2007) Subwavelength waveguide for visible light. Appl Phys Lett 90:021104ADSCrossRefGoogle Scholar
  6. 6.
    Zhao HZ, Rizal B, McMahon G, Wang H, Dhakal P, Kirkpatrick T, Ren ZF, Chiles TC, Naughton MJ, Cai D (2012) Ultrasensitive chemical detection using nanocoax sensor. ACS Nano 6:3171–3178CrossRefGoogle Scholar
  7. 7.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871ADSCrossRefGoogle Scholar
  8. 8.
    Holgado M, Barrios CA, Ortega FJ, Sanza FJ, Casquel R, Laguna MF, Banuls MJ, Lopez-romero D, Puchades R, Maquaieira A (2010) Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nanopillars. Biosens Bioelectron 25:2553–2558CrossRefGoogle Scholar
  9. 9.
    Kubo W, Fujikawa S (2011) Au double nanopillars with nanogap for plasmonic sensor. Nano Lett 11:8–15ADSCrossRefGoogle Scholar
  10. 10.
    Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87ADSCrossRefGoogle Scholar
  11. 11.
    Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196CrossRefGoogle Scholar
  12. 12.
    Microchem Corporation, Newton, MAGoogle Scholar
  13. 13.
    Xu Q, Perez-Castillejos R, Li ZF, Whitesides GM (2006) Fabrication of high-aspect-ratio metallic nanostructures using nanoskiving. Nano Lett 6:2163–2165ADSCrossRefGoogle Scholar
  14. 14.
    Krishnan A, Thio T, Kim TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7ADSCrossRefGoogle Scholar
  15. 15.
    Pozar D (2012) Microwave engineering, 4th edn. Wiley, New YorkGoogle Scholar
  16. 16.
    Kempa K, Wang X, Ren ZF, Naughton MJ (2008) Discretely guided electromagnetic effective medium. Appl Phys Lett 92:043114ADSCrossRefGoogle Scholar
  17. 17.
    Peng Y, Wang X, Kempa K (2008) TEM-like optical mode of a coaxial nanowaveguide. Opt Express 16:1758–1763ADSCrossRefGoogle Scholar
  18. 18.
    Airy GB (1835) On the diffraction of an object-glass with circular aperture. Trans Camb Philos Soc 5:283–291ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Rizal
    • 1
  • F. Ye
    • 1
  • P. Dhakal
    • 1
  • T. C. Chiles
    • 2
  • S. Shepard
    • 3
  • G. McMahon
    • 3
  • M. J. Burns
    • 1
  • Michael J. Naughton
    • 1
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Department of BiologyBoston CollegeChestnut HillUSA
  3. 3.Nanofabrication Clean RoomBoston CollegeChestnut HillUSA

Personalised recommendations