Advertisement

Terahertz Spectroscopy and Imaging at the Nanoscale for Biological and Security Applications

  • John W. Bowen
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The chemical specificity of terahertz spectroscopy, when combined with techniques for sub-wavelength sensing, is giving new understanding of processes occurring at the nanometre scale in biological systems and offers the potential for single molecule detection of chemical and biological agents and explosives. In addition, terahertz techniques are enabling the exploration of the fundamental behaviour of light when it interacts with nanoscale optical structures, and are being used to measure ultrafast carrier dynamics, transport and localisation in nanostructures.

This chapter will explain how terahertz scale modelling can be used to explore the fundamental physics of nano-optics, it will discuss the terahertz spectroscopy of nanomaterials, terahertz near-field microscopy and other sub-wavelength techniques, and summarise recent developments in the terahertz spectroscopy and imaging of biological systems at the nanoscale. The potential of using these techniques for security applications will be considered.

Keywords

Probe Beam Probe Pulse Terahertz Radiation Terahertz Pulse Terahertz Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huang S, Ashworth PC, Kan KWC, Chen Y, Wallace VP, Zhang Y, Pickwell-MacPherson E (2009) Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt Express 17:3848–3854ADSCrossRefGoogle Scholar
  2. 2.
    Pearce J, Mittleman DM (2003) Using terahertz pulses to study light scattering. Phys B 338:92–96ADSCrossRefGoogle Scholar
  3. 3.
    Jian Z, Pearce J, Mittleman DM (2003) Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium. Phys Rev Lett 91: 033903-1-4Google Scholar
  4. 4.
    Cheville RA, McGowan RW, Grischkowsky D (1998) Time resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres. Phys Rev Lett 80:269–272ADSCrossRefGoogle Scholar
  5. 5.
    Wolf JP, Pan YP, Turner GM, Beard MC, Schmuttenmaer CA, Holler S, Chang RK (2001) Ballistic trajectories of optical wave packets within microcavities. Phys Rev A 64: 023808-1-5Google Scholar
  6. 6.
    Pearce J, Jian Z, Mittleman DM (2003) Statistics of multiply scattered broadband terahertz pulses. Phys Rev Lett 91: 043903-1-4Google Scholar
  7. 7.
    Mitrofanov O, Lee M, Hsu JWP, Brener I, Harel R, Fredereci JF, Wynn JD, Pfeiffer LN, West KW (2001) Collection-mode near-field imaging with 0.5-THz pulses. IEEE J Sel Top Quantum Electron 7:600–607CrossRefGoogle Scholar
  8. 8.
    Kawano Y (2011) Collection-mode near-field imaging with 0.5-THz pulses. IEEE J Sel Top Quantum Electron 17:67–78CrossRefGoogle Scholar
  9. 9.
    Seo MA, Adam AJL, Kang JH, Lee JW, Ahn KJ, Park QH, Planken PCM, Kim DS (2008) Near field imaging of terahertz focusing onto rectangular apertures. Opt Express 16:20484–20489CrossRefGoogle Scholar
  10. 10.
    Adam AJL, Brok JM, Seo MA, Ahn KJ, Kim DS, Kang JH, Park QH, Nagel M, Planken PCM (2008) Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. Opt Express 16:7407–7417ADSCrossRefGoogle Scholar
  11. 11.
    Zhan H, Mendis R, Mittleman DM (2010) Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides. Opt Express 18:9643–9650CrossRefGoogle Scholar
  12. 12.
    Rusina A, Durach M, Nelson KA, Stockman MI (2008) Nanoconcentration of terahertz radiation in plasmonic waveguides. Opt Express 16:18576–18589ADSCrossRefGoogle Scholar
  13. 13.
    van der Valk NCJ, Planken PCM (2004) Towards terahertz near-field microscopy. Phil Trans R Soc Lond A 362:315–321ADSCrossRefGoogle Scholar
  14. 14.
    Planken PCM, van Rijmenam CEWM, Schouten RN (2005) Opto-electronic pulsed THz systems. Semicond Sci Technol 20:S121–S127ADSCrossRefGoogle Scholar
  15. 15.
    Astley V, Zhan H, Mittleman DM, Hao F, Nordlander P (2007) Plasmon-enhanced terahertz near-field microscopy. CLEO 2007, CTuJJ5.pdfGoogle Scholar
  16. 16.
    Huber AJ, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R (2008) Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett 8:3766–3770ADSCrossRefGoogle Scholar
  17. 17.
    Yamashita M, Kawase K, Otani C, Kiwa T, Tonouchi M (2005) Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt Express 13:115–120ADSCrossRefGoogle Scholar
  18. 18.
    Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73: 193311-1-4Google Scholar
  19. 19.
    Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239CrossRefGoogle Scholar
  20. 20.
    Hegmann FA, Cooke DG, Walther M, Baillie DMJ, Sydora RD, Marsiglio F (2008) Terahertz dynamics of localized carriers. EOS Annual Meeting 2008, Paris, TOM 2, Session 12Google Scholar
  21. 21.
    Jung BJ, Myung Y, Cho YJ, Sohn YJ, Jang DM, Kim HS, Lee CW, Park J, Maeng I, Son JH, Kang C (2010) Terahertz spectroscopy of nanocrystal-carbon nanotube and –graphene oxide hybrid nanostructures. J Phys Chem C 114:11258–11265CrossRefGoogle Scholar
  22. 22.
    Parkinson P, Joyce HJ, Gao Q, Tan HH, Zhang X, Zou J, Jagadish C, Herz LM, Johnston MB (2009) Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett 9:3349–3353ADSCrossRefGoogle Scholar
  23. 23.
    Strait JH, George PA, Levendorf M, Blood-Forsythe M, Rana F, Park J (2009) Measurements of the carrier dynamics and terahertz response of oriented germanium nanowires using optical-pump terahertz-probe spectroscopy. Nano Lett 9:2967–2972ADSCrossRefGoogle Scholar
  24. 24.
    Bowen JW (2011) Terahertz spectroscopy of biological systems. In: Di Bartolo B, Collins J (eds) Biophotonics: spectroscopy, imaging, sensing, and manipulation. Springer, Dordrecht, pp 287–303CrossRefGoogle Scholar
  25. 25.
    Fischer BM, Walther M, Uhd Jepsen P (2002) Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol 47:3807–3814CrossRefGoogle Scholar
  26. 26.
    Laman N, Sree Harsha S, Grischkowsky D, Melinger JS (2008) High-resolution waveguide THz spectroscopy of biological molecules. Biophys J 94:1010–1020CrossRefGoogle Scholar
  27. 27.
    Leitner DM, Gruebele M, Havenith M (2008) Solvation dynamics of biomolecules: modeling and terahertz experiments. HFSP J 2:314–323CrossRefGoogle Scholar
  28. 28.
    Castro-Camus E, Johnston MB (2008) Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy. Chem Phys Lett 455:289–292ADSCrossRefGoogle Scholar
  29. 29.
    Groma GI, Hebling J, Kozma IZ, Váró G, Hauer J, Kuhl J, Riedle E (2008) Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes. PNAS 105:6888–6893ADSCrossRefGoogle Scholar
  30. 30.
    Haring Bolivar P, Nagel M, Richter F, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R (2004) Label-free THz sensing of genetic sequences: towards ‘THz biochips’. Phil Trans R Soc Lond A 362:323–335ADSCrossRefGoogle Scholar
  31. 31.
    Nagel M, Först M, Kurz H (2006) THz biosensing devices: fundamentals and technology. J Phys Condens Matter 18:S601–S618ADSCrossRefGoogle Scholar
  32. 32.
    Liu H-B, Plopper G, Earley S, Chen Y, Ferguson B, Zhang X-C (2007) Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. Biosens Bioelectron 22:1075–1080CrossRefGoogle Scholar
  33. 33.
    Leahy-Hoppa MR, Fitch MJ, Zheng X, Hayden LM, Osiander R (2007) Wideband terahertz spectroscopy of explosives. Chem Phys Lett 434:227–230ADSCrossRefGoogle Scholar
  34. 34.
    Laman N, Sree Harsha S, Grischkowsky D, Melinger JS (2008) 7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features. Opt Express 16:4094–4105ADSCrossRefGoogle Scholar
  35. 35.
    Liu H-B, Zhong H, Karpowicz N, Chen Y, Zhang X-C (2007) Terahertz spectroscopy and imaging for defense and security applications. Proc IEEE 95:1514–1527CrossRefGoogle Scholar
  36. 36.
    Kawase K, Ogawa Y, Watanabe Y (2003) Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11:2549–2554ADSCrossRefGoogle Scholar
  37. 37.
    Brown ER, Khromova TB, Globus T, Woolard DL, Jensen J, Majewski A (2006) Terahertz-regime attenuation signatures in Bacillus subtilis and a model based on surface polariton effects. IEEE Sens J 6:1076–1083CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Terahertz Laboratory, School of Systems EngineeringUniversity of ReadingReadingUK

Personalised recommendations