Skip to main content

Coherent Control of Biomolecules and Imaging Using Nanodoublers

  • Conference paper
  • First Online:
Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale

Abstract

In the quest for the next generation of imaging bio-markers, successful probes have to prove to be non toxic, bright, stable against long term excitation, and able to generate a sharp contrast against background fluorescence. In all these respects, Harmonic Nanoparticles (HNPs, “nanodoublers”) are receiving an increasing attention as they also open a series of alternative detection possibilities simply not accessible with the present generation of fluorescent dyes and quantum dots. In the first part of the chapter, we report on this novel labelling method with unprecedented wavelength flexibility, enabled by the non-resonant nature of the second harmonic process. The possibility of employing infrared excitation and the consequent deeper tissue penetration is especially promising for their in vivo applications [1]. The phase-coherent optical response of HNPs can also be exploited to fully characterize the excitation laser pulse in the focal spot of a high-NA objective with nanometric resolution. This proof-of-principle “nano-FROG” experiment [2] sets the ground for further phase-sensitive self-referenced applications, after the recent demonstration of harmonic holography and heterodyne detection with external references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Extermann J, Bonacina L, Cuna E, Kasparian C, Mugnier Y, Feurer T, Wolf JP (2009) Nanodoublers as deep imaging markers for multi-photon microscopy. Opt Express 17:15342–15349

    Article  ADS  Google Scholar 

  2. Extermann J, Bonacina L, Courvoisier F, Kiselev D, Mugnier Y, Le Dantec R, Galez C, Wolf JP (2008) Nano-FROG: frequency resolved optical gating by a nanometric object. Opt Express 16:10405–10411

    Article  ADS  Google Scholar 

  3. Courvoisier F, Boutou V, Guyon L, Roth M, Rabitz H, Wolf JP (2006) Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics. J Photochem Photobiol A-Chem 180:300–306

    Article  Google Scholar 

  4. Courvoisier F, Boutou V, Wood V, Bartelt A, Roth M, Rabitz H, Wolf JP (2005) Femtosecond laser pulses distinguish bacteria from background urban aerosols. Appl Phys Lett 87:063901

    Article  ADS  Google Scholar 

  5. Petersen J, Mitric R, Bonacic-Koutecky V, Wolf JP, Roslund J, Rabitz H (2010) How shaped light discriminates nearly identical biochromophores. Phys Rev Lett 105:073003

    Article  ADS  Google Scholar 

  6. Roslund J, Roth M, Guyon L, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2011) Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins. J Chem Phys 134(3):034511

    Article  ADS  Google Scholar 

  7. Roth M, Guyon L, Roslund J, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2009) Quantum control of tightly competitive product channels. Phys Rev Lett 102:253001

    Article  ADS  Google Scholar 

  8. Bonacina L, Mugnier Y, Courvoisier F, Le Dantec R, Extermann J, Lambert Y, Boutou V, Galez C, Wolf JP (2007) Polar Fe(IO3)(3) nanocrystals as local probes for nonlinear microscopy. Appl Phys B-Lasers Opt 87:399–403

    Article  ADS  Google Scholar 

  9. Baumner R, Bonacina L, Enderlein J, Extermann J, Fricke-Begemann T, Marowsky G, Wolf JP (2010) Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles. Opt Express 18:23218–23225

    Article  ADS  Google Scholar 

  10. Extermann J, Béjot P, Bonacina L, Mugnier Y, Le Dantec R, Mazingue T, Galez C, Wolf JP (2009) An inexpensive nonlinear medium for intense ultrabroadband pulse characterization. Appl Phys B 97:537–540

    Article  ADS  Google Scholar 

  11. Le Xuan L, Brasselet S, Treussart F, Roch JF, Marquier F, Chauvat D, Perruchas S, Tard C, Gacoin T (2006) Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters. Appl Phys Lett 89:121118

    Article  ADS  Google Scholar 

  12. Pu Y, Centurion M, Psaltis D (2008) Harmonic holography: a new holographic principle. Appl Opt 47:A103–A110

    Article  ADS  Google Scholar 

  13. Hsieh CL, Pu Y, Grange R, Laporte G, Psaltis D (2010) Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt Express 18:20723–20731

    Article  ADS  Google Scholar 

  14. Hsieh CL, Pu Y, Grange R, Psaltis D (2010) Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18:12283–12290

    Article  Google Scholar 

  15. Squier JA, Muller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315–324

    Article  ADS  Google Scholar 

  16. Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514

    Article  ADS  Google Scholar 

  17. von Vacano B, Wohlleben W, Motzkus M (2006) Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy. Opt Lett 31:413–415

    Article  ADS  Google Scholar 

  18. Ogilvie JP, Debarre D, Solinas X, Martin JL, Beaurepaire E, Joffre M (2006) Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt Express 14:759–766

    Article  ADS  Google Scholar 

  19. Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Dimler F, Fischer A, Pfeiffer W, Rohmer M, Schneider C, Steeb F, Struber C, Voronine DV (2010) Spatiotemporal control of nanooptical excitations. Proc Natl Acad Sci USA 107:5329–5333

    Article  ADS  Google Scholar 

  20. Fuchs U, Zeitner UD, Tunnermann A (2005) Ultra-short pulse propagation in complex optical systems. Opt Express 13:3852–3861

    Article  ADS  Google Scholar 

  21. Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688

    Article  ADS  Google Scholar 

  22. Muller M, Squier J, Brakenhoff GJ (1995) Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by 2-photon absorption. Opt Lett 20:1038–1040

    Article  ADS  Google Scholar 

  23. Brixner T, De Abajo FJG, Spindler C, Pfeiffer W (2006) Adaptive ultrafast nano-optics in a tight focus. Appl Phys B-Lasers Opt 84:89–95

    Article  ADS  Google Scholar 

  24. Amat-Roldan I, Cormack IG, Loza-Alvarez P, Artigas D (2004) Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens. Opt Lett 29:2282–2284

    Article  ADS  Google Scholar 

  25. Bowlan P, Gabolde P, Trebino R (2007) Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. Opt Express 15:10219–10230

    Article  ADS  Google Scholar 

  26. Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions – exact quantum-mechanical calculations. J Chem Phys 85:5805–5820

    Article  ADS  Google Scholar 

  27. Tannor DJ, Rice SA (1985) Control of selectivity of chemical-reaction via control of wave packet evolution. J Chem Phys 83:5013–5018

    Article  ADS  Google Scholar 

  28. Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503

    Article  ADS  Google Scholar 

  29. Warren WS, Rabitz H, Dahleh M (1993) Coherent control of quantum dynamics – the dream is alive. Science 259:1581–1589

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71:1929–1960

    Article  ADS  Google Scholar 

  31. Bonacina L, Extermann J, Rondi A, Boutou V, Wolf JP (2007) Multiobjective genetic approach for optimal control of photoinduced processes. Phys Rev A 76:023408

    Article  ADS  Google Scholar 

  32. Dantus M, Lozovoy VV (2004) Experimental coherent laser control of physicochemical processes. Chem Rev 104:1813–1859

    Article  Google Scholar 

  33. Levis RJ, Menkir GM, Rabitz H (2001) Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709–713

    Article  ADS  Google Scholar 

  34. Brixner T, Damrauer NH, Niklaus P, Gerber G (2001) Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414:57–60

    Article  ADS  Google Scholar 

  35. Brixner T, Gerber G (2003) Quantum control of gas-phase and liquid-phase femtochemistry. Chemphyschem 4:418–438

    Article  Google Scholar 

  36. Boutou V, Favre C, Hill SC, Pan YL, Chang RK, Wolf JP (2002) Backward enhanced emission from multiphoton processes in aerosols. Appl Phys B-Lasers Opt 75:145–152

    Article  ADS  Google Scholar 

  37. Favre C, Boutou V, Hill SC, Zimmer W, Krenz M, Lambrecht H, Yu J, Chang RK, Woeste L, Wolf JP (2002) White-light nanosource with directional emission. Phys Rev Lett 89:035002

    Article  ADS  Google Scholar 

  38. Hill SC, Boutou V, Yu J, Ramstein S, Wolf JP, Pan YL, Holler S, Chang RK (2000) Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities. Phys Rev Lett 85:54–57

    Article  ADS  Google Scholar 

  39. Pan YL, Hill SC, Wolf JP, Holler S, Chang RK, Bottiger JR (2002) Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan. Appl Opt 41:2994–2999

    Article  ADS  Google Scholar 

  40. Courvoisier F, Bonacina L, Boutou V, Guyon L, Bonnet C, Thuillier B, Extermann J, Roth M, Rabitz H, Wolf JP (2008) Identification of biological microparticles using ultrafast depletion spectroscopy. Faraday Discuss 137:37–49

    Article  ADS  Google Scholar 

  41. Iketaki Y, Watanabe T, Ishiuchi S, Sakai M, Omatsu T, Yamamoto K, Fujii M, Watanabe T (2003) Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chem Phys Lett 372:773–778

    Article  ADS  Google Scholar 

  42. Kasparian J, Rodriguez M, Mejean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre YB, Mysyrowicz A, Sauerbrey R, Wolf JP, Woste L (2003) White-light filaments for atmospheric analysis. Science 301:61–64

    Article  ADS  Google Scholar 

  43. Mejean G, Kasparian J, Yu J, Frey S, Salmon E, Wolf JP (2004) Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl Phys B-Lasers Opt 78:535–537

    Article  ADS  Google Scholar 

  44. Dixon PB, Hahn DW (2004) Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy. Anal Chem 77:631–638

    Article  Google Scholar 

  45. Morel S, Leone N, Adam P, Amouroux J (2003) Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl Opt 42:6184–6191

    Article  ADS  Google Scholar 

  46. Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. App Phys Lett 88(6):63901

    Article  Google Scholar 

  47. Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime. J Appl Phys 99:084701

    Article  ADS  Google Scholar 

  48. Baudelet M, Yu J, Bossu M, Jovelet J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 89:163903

    Article  ADS  Google Scholar 

  49. Li BQ, Rabitz H, Wolf JP (2005) Optimal dynamic discrimination of similar quantum systems with time series data. J Chem Phys 122:154103

    Article  ADS  Google Scholar 

  50. Rondi A, Extermann J, Bonacina L, Weber SM, Wolf JP (2009) Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet. Appl Phys B-Lasers Opt 96:757–761

    Article  ADS  Google Scholar 

  51. Weber S, Barthelemy M, Chatel B (2010) Direct shaping of tunable UV ultra-short pulses. Appl Phys B-Lasers Opt 98:323–326

    Article  ADS  Google Scholar 

  52. Berge L, Skupin S, Mejean G, Kasparian J, Yu J, Frey S, Salmon E, Wolf JP (2005) Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air. Phys Rev E 71:016602

    Article  ADS  Google Scholar 

  53. Berge L, Skupin S, Nuter R, Kasparian J, Wolf JP (2007) Ultrashort filaments of light in weakly ionized, optically transparent media. Rep Prog Phys 70:1633–1713

    Article  ADS  Google Scholar 

  54. Chin SL, Hosseini SA, Liu W, Luo Q, Theberge F, Akozbek N, Becker A, Kandidov VP, Kosareva OG, Schroeder H (2005) The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can J Phys 83:863–905

    Article  ADS  Google Scholar 

  55. Couairon A, Mysyrowicz A (2007) Femtosecond filamentation in transparent media. Phys Rep-Rev Sect Phys Lett 441:47–189

    Google Scholar 

  56. Kasparian J, Wolf JP (2008) Physics and applications of atmospheric nonlinear optics and filamentation. Opt Express 16:466–493

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the collaborators at the Universities of Geneva and Lyon, in particular F. Courvoisier, L. Guyon, V. Boutou, E. Salmon, J. Yu, G. Mejean, J. Kasparian, A. Rondi, J. Extermann, P. Bejot, S. Weber, D. Kiselev, and M. Moret, as well as H. Rabitz and his group at Princeton, particularly M. Roth and J. Roslund.

We also acknowledge the financial support of the Swiss National Science Foundation (contracts No. 2000021–111688 and No 200020–124689), the Swiss SER through the COST P18 and MP0603 projects, the Swiss NCCR MUST, and European FP7 project NAMDIATREAM (NMP-2009-4.0-3-246479).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bonacina, L., Wolf, JP. (2013). Coherent Control of Biomolecules and Imaging Using Nanodoublers. In: Di Bartolo, B., Collins, J. (eds) Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5313-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5313-6_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5312-9

  • Online ISBN: 978-94-007-5313-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics