Simulation of Nuclear Dynamics of C60: From Vibrational Excitation by Near-IR Femtosecond Laser Pulses to Subsequent Nanosecond Rearrangement and Fragmentation

  • N. Niitsu
  • M. Kikuchi
  • H. Ikeda
  • K. Yamazaki
  • M. Kanno
  • H. Kono
  • K. Mitsuke
  • M. Toda
  • K. Nakai
  • S. Irle
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)


Impulsive Raman excitation of C60 by single or double near-IR femtosecond pulses of λ = 1,800 nm was investigated by using a time-dependent adiabatic state approach combined with the density functional theory method. We confirmed that the vibrational energy stored in a Raman active mode of C60 is maximized when T pT vib/2 in the case of a single pulse, where T p is the pulse length and T vib is the vibrational period of the mode. In the case of a double pulse, mode selective excitation can be achieved by adjusting the pulse interval τ. The energy of a Raman active mode is maximized if τ is chosen to equal an integer multiple of T vib, and it is minimized if τ is equal to a half-integer multiple of T vib. The energy stored can be larger than the barrier heights for rearrangement or fragmentation processes. The picosecond or nanosecond dynamics of resulting Stone-Wales rearrangement (SWR) and fragmentation are also investigated by using the density functional-based tight-binding semiempirical method. We present how SWRs are caused by the flow of vibrational kinetic energy on the carbon network of C60. In the case where the hg(1) prolate-oblate mode is initially excited, the number of SWRs prior to fragmentation is larger than in the case of ag(1) mode excitation for the same excess vibrational energy. Fragmentation by C2-ejection is found to occur from strained, fused pentagon/pentagon defects produced by a preceding SWR, which confirms the earliest mechanistic speculations of Smalley et al. (J. Chem. Phys. 88, 220, 1988). The fragmentation rate of C60 → C58 + C2 in the case of hg(1) prolate-oblate mode excitation does not follow a statistical description as employed for instance in the Rice-Ramsperger-Kassel (RRK) theory, whereas the rate for ag(1) mode excitation does follow predictions made by RRK. We also found for the hg(1) mode excitation that the nonstatistical nature still remains in the distribution of barycentric velocities of fragments C58 and C2. This result suggests that it is possible to control rearrangement and subsequent bond breaking in a “nonstatistical” way by initial selective mode excitation.


Vibrational Energy Neutral Model Mode Excitation Double Pulse Raman Active Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for Scientific Research No. 21350005, and the Joint Studies Program (2011) of the Institute for Molecular Science. The authors are grateful to Prof. I.V. Hertel for his valuable discussion on the dynamics of C60. We thank Prof. Thomas Frauenheim for providing the DFTB + program and parameters and also Prof. Keiji Morokuma for advice on the use of the DFTB + program.


  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nano- tubes. Academic, San DiegoGoogle Scholar
  3. 3.
    Kroto HW, Walton DRM (2011) In: Langa F, Nierengarten JF (eds) Fullerenes: principles and applications, 2nd edn. Royal Society of Chemistry, CambridgeGoogle Scholar
  4. 4.
    Hertel IV, Laarmann T, Schulz CP (2005) Adv Atom Mol Opt Phys 50:219CrossRefGoogle Scholar
  5. 5.
    O’Brien SC, Heath JR, Curl RF, Smalley RE (1988) J Chem Phys 88:220CrossRefGoogle Scholar
  6. 6.
    Matt S, Echt O, Scheier P, Märk TD (2001) Chem Phys Lett 348:194CrossRefGoogle Scholar
  7. 7.
    de Vries J, Steger H, Kamke B, Menzel C, Weisser B, Kamke W, Hertel IV (1992) Chem Phys Lett 188:159CrossRefGoogle Scholar
  8. 8.
    Reinköster A, Korica S, Prümper G, Viefhaus J, Godehusen K, Schwarzkopf O, Mast M, Becker U (2004) J Phys B 37:2135CrossRefGoogle Scholar
  9. 9.
    Laarmann T, Shchatsinin I, Stalmashonak A, Boyle M, Zhavoronkov N, Handt J, Schmidt R, Schulz CP, Hertel IV (2007) Phys Rev Lett 98:058302CrossRefGoogle Scholar
  10. 10.
    Foltin V, Foltin M, Matt S, Scheier P, Becker K, Deutsch H, Märk TD (1998) Chem Phys Lett 289:181CrossRefGoogle Scholar
  11. 11.
    Jensen J, Zettergren H, Schmidt HT, Cederquist H, Tomita S, Nielsen SB, Rangama J, Hvelplund P, Manil B, Huber BA (2004) Phys Rev A 69:053203CrossRefGoogle Scholar
  12. 12.
    Campbell EEB, Raz T, Levine RD (1996) Chem Phys Lett 253:261CrossRefGoogle Scholar
  13. 13.
    Hansen K, Hoffmann K, Campbell EEB (2003) J Chem Phys 119:2513CrossRefGoogle Scholar
  14. 14.
    Shchatsinin I, Laarmann T, Stibenz G, Steinmeyer G, Stalmashonak A, Zhavoronkov N, Schulz CP, Hertel IV (2006) J Chem Phys 125:194320CrossRefGoogle Scholar
  15. 15.
    Brabec T, Côté M, Boulanger P, Ramunno L (2005) Phys Rev Lett 95:073001CrossRefGoogle Scholar
  16. 16.
    Jaroń-Becker A, Becker A, Faisal FHM (2006) Phys Rev Lett 96:143006CrossRefGoogle Scholar
  17. 17.
    Hertel IV, Shchatsinin I, Zhavoronkov N, Ritze H-H, Schulz CP (2009) Phys Rev Lett 102:023003CrossRefGoogle Scholar
  18. 18.
    Shchatsinin I, Ritze H-H, Schulz CP, Hertel IV (2009) Phys Rev A 79:053414CrossRefGoogle Scholar
  19. 19.
    Torralva B, Niehaus TA, Elstner M, Suhai S, Frauenheim T, Allen RE (2001) Phys Rev B 64:153105CrossRefGoogle Scholar
  20. 20.
    Zhang GP, Sun X, George TF (2003) Phys Rev B 68:165410CrossRefGoogle Scholar
  21. 21.
    Laarmann T, Schulz CP, Hertel IV (2008) In: Yamanouchi K, Chin SL, Agostini P, Ferrante G (eds) Progress in ultrafast intense laser science III. Springer, Heidelberg, pp 129–148CrossRefGoogle Scholar
  22. 22.
    Antoine R, Dugourd P, Rayane D, Benichou E, Broyer M, Chandezon F, Guet C (1999) J Chem Phys 110:9771CrossRefGoogle Scholar
  23. 23.
    Bhardwaj VR, Corkum PB, Rayner DM (2003) Phys Rev Lett 91:203004CrossRefGoogle Scholar
  24. 24.
    Nakai K, Kono H, Sato Y, Niitsu N, Sahnoun R, Tanaka M, Fujimura Y (2007) Chem Phys 338:127CrossRefGoogle Scholar
  25. 25.
    Sato Y, Kono H, Koseki S, Fujimura Y (2003) J Am Chem Soc 125:8019CrossRefGoogle Scholar
  26. 26.
    Kono H, Sato Y, Tanaka N, Kato T, Nakai K, Koseki S, Fujimura Y (2004) Chem Phys 304:203CrossRefGoogle Scholar
  27. 27.
    Kono H, Sato Y, Kanno M, Nakai K, Kato T (2006) Bull Chem Soc Jpn 79:196CrossRefGoogle Scholar
  28. 28.
    Jortner J, Levine RD (1991) In: Jortner J, Levine RD, Pullman A (eds) Mode selective chemistry. Kluwer, Dordrecht, p 535Google Scholar
  29. 29.
    Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947CrossRefGoogle Scholar
  30. 30.
    Seifert G, Porezag D, Frauenheim T (1996) Int J Quant Chem 58:185CrossRefGoogle Scholar
  31. 31.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260CrossRefGoogle Scholar
  32. 32.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501CrossRefGoogle Scholar
  33. 33.
    Murry RL, Strout DL, Odom GK, Scuseria GE (1993) Nature 366:665CrossRefGoogle Scholar
  34. 34.
    Irle S, Zheng G, Wang Z, Morokuma K (2006) J Phys Chem B 110:14531CrossRefGoogle Scholar
  35. 35.
    Fedorov AS, Fedorov DA, Kuzubov AA, Avramov PV, Nishimura Y, Irle S, Witek HA (2011) Phys Rev Lett 107:175506CrossRefGoogle Scholar
  36. 36.
    Yan Y-X, Gamble EB Jr, Nelson KA (1985) J Chem Phys 83:5391CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski S, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford. GAUSSIAN 03, Revision E.01Google Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr.,Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford. GAUSSIAN 09, Revision A.02Google Scholar
  39. 39.
    Choi CH, Kertesz M, Mihaly L (2000) J Phys Chem 104:102CrossRefGoogle Scholar
  40. 40.
    Elstner M (1998) Dissertation at the University PaderbornGoogle Scholar
  41. 41.
    Zheng G, Irle S, Morokuma K (2005) Chem Phys Lett 412:210CrossRefGoogle Scholar
  42. 42.
    Zheng G, Wang Z, Irle S, Morokuma K (2007) J Nanosci Nanotechnol 7:1662CrossRefGoogle Scholar
  43. 43.
    Saha B, Shindo S, Irle S, Morokuma K (2009) ACS Nano 3:2241CrossRefGoogle Scholar
  44. 44.
    Jakowsi J, Irle S, Morokuma K (2010) Phys Rev B 82:125443CrossRefGoogle Scholar
  45. 45.
    Sahnoun R, Nakai K, Sato Y, Kono H, Fujimura Y, Tanaka M (2006) Chem Phys Lett 430:167CrossRefGoogle Scholar
  46. 46.
    Sahnoun R, Nakai K, Sato Y, Kono H, Fujimura Y, Tanaka M (2006) J Chem Phys 125:184306CrossRefGoogle Scholar
  47. 47.
    Kono H, Koseki S (2002) In: Bandrauk AD, Fujimura Y, Gordon RJ (eds) Laser control and manipulation of molecules. American Chemical Society, Washington, DC, pp 267–284CrossRefGoogle Scholar
  48. 48.
    Zhou X, Lin Z, Jiang C, Gao M, Allen RE (2010) Phys Rev B 82:075433CrossRefGoogle Scholar
  49. 49.
    Boyle M, Laarmann T, Shchatsinin I, Schulz CP, Hertel IV (2005) J Chem Phys 122:181103CrossRefGoogle Scholar
  50. 50.
    Shchatsinin I, Laarmann T, Zhavoronkov N, Schulz CP, Hertel IV (2008) J Chem Phys 129:204308CrossRefGoogle Scholar
  51. 51.
    Kroto HW (1987) Nature 329:529CrossRefGoogle Scholar
  52. 52.
    Bettinger HF, Yakobson BI, Scuseria GE (2003) J Am Chem Soc 125:5572CrossRefGoogle Scholar
  53. 53.
    Podlivaev AI, Openov LA (2005) JETP Lett 81:533CrossRefGoogle Scholar
  54. 54.
    Lifshitz C (2002) Eur J Mass Spectrom 8:85CrossRefGoogle Scholar
  55. 55.
    Forst W (2003) Unimolecular reactions. Cambridge, CambridgeGoogle Scholar
  56. 56.
    Baer T, Hase WL (1996) Unimolecular reaction dynamics. Oxford University Press, New YorkGoogle Scholar
  57. 57.
    Katayanagi H, Mitsuke K (2010) J Chem Phys 133:081101CrossRefGoogle Scholar
  58. 58.
    Katayanagi H, Mitsuke K (2011) J Chem Phys 135:144307CrossRefGoogle Scholar
  59. 59.
    Zettergren H, Alcami M, Martin F (2008) Chem Phys Chem 9:861CrossRefGoogle Scholar
  60. 60.
    Beu TA, Horváth L, Ghişoiu I (2009) Phys Rev B 79:054112CrossRefGoogle Scholar
  61. 61.
    Beu TA, Jurjiu A (2011) Phys Rev B 83:024103CrossRefGoogle Scholar
  62. 62.
    Churilov GN, Fedorov AS, Novikov PV (2003) Carbon 41:173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • N. Niitsu
    • 1
  • M. Kikuchi
    • 1
  • H. Ikeda
    • 1
  • K. Yamazaki
    • 1
  • M. Kanno
    • 1
  • H. Kono
    • 1
  • K. Mitsuke
    • 2
  • M. Toda
    • 3
  • K. Nakai
    • 4
  • S. Irle
    • 5
  1. 1.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan
  2. 2.Institute for Molecular ScienceOkazakiJapan
  3. 3.Department of PhysicsNara Women’s UniversityNaraJapan
  4. 4.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan
  5. 5.Department of Chemistry, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations