Advertisement

Quantum Master Equation Study of Electromagnetically Induced Transparency in Dipole-Coupled Dimer Models

  • Takuya Minami
  • Masayoshi Nakano
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

The intermonomer interaction effect on electromagnetically induced transparency (EIT) in dipole-coupled dimer models with different orientations and intermonomer distances is investigated. The absorption properties are evaluated using the imaginary part of the dynamic polarizability α calculated by the quantum master equation method. It is found that EIT can be observed even in the dimer systems with near-degenerate excited states originating in an intermonomer interaction by adjusting the incident field frequency.

Keywords

Electromagnetically Induce Transparency Polarizability Spectrum Transition Moment Dime Model Coupling Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by a Grant-in-Aid for Scientific Research (No. 21350011) from Japan Society for the Promotion of Science (JSPS) and the global COE (center of excellence) program “Global Education and Research Center for Bio-Environmental Chemistry” of Osaka University. Tayuka Minami expresses his special thanks for a JSPS Research Fellowship for Young Scientists (No. 1221350011).

References

  1. 1.
    Fleischhauer M, Imamoğlu A, Marangos JP (2005) Rev Mod Phys 77:633–673CrossRefGoogle Scholar
  2. 2.
    Boyd RW (2008) Nonlinear optics, 3rd edn. Elsevier, New YorkGoogle Scholar
  3. 3.
    Harris SE, Field JE, Imamoğlu A (1990) Phys Rev Lett 64:1107–1110CrossRefGoogle Scholar
  4. 4.
    Field JE, Han KH, Harris SE (1991) Phys Rev Lett 67:3062–3065CrossRefGoogle Scholar
  5. 5.
    Bolloer KJ, Imamoğlu A, Harris SE (1991) Phys Rev Lett 66:2593–2596CrossRefGoogle Scholar
  6. 6.
    Ham BS, Hemmer PR, Shahriar MS (1997) Opt Comm 144:227–230CrossRefGoogle Scholar
  7. 7.
    Marcinkevičius S, Gushterov A, Reithmaier JP (2008) Appl Phys Lett 92(041113):1–3Google Scholar
  8. 8.
    Xu H, Lu Y, Lee Y, Ham BS (2009) Opt Express 18:17736–17747CrossRefGoogle Scholar
  9. 9.
    Light PS, Benabid F, Pearce GJ, Couny F, Bird DM (2009) Appl Phys Lett 94:141103-1-3CrossRefGoogle Scholar
  10. 10.
    Schmidt H, Imamoğlu A (1996) Opt Lett 21:1936–1938CrossRefGoogle Scholar
  11. 11.
    Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Nature 397:594–598CrossRefGoogle Scholar
  12. 12.
    Harris SE, Hau LV (1999) Phys Rev Lett 82:4611–4614CrossRefGoogle Scholar
  13. 13.
    Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Nature 409:490–493CrossRefGoogle Scholar
  14. 14.
    Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas CJ, Rempe G (2010) Nature 465:755–758CrossRefGoogle Scholar
  15. 15.
    Gea-Banacloche J, Mumba M, Xiao M (2006) Phys Rev 74:165330-1-7Google Scholar
  16. 16.
    Nakano M, Yamaguchi K (1995) Chem Phys Lett 234:323–329CrossRefGoogle Scholar
  17. 17.
    Takahata M, Nakano M, Fujita H, Yamaguchi K (2002) Chem Phys Lett 363:422–428CrossRefGoogle Scholar
  18. 18.
    Leegwater JA, Durrant JR, Klung DR (1997) J Phys Chem B 101:7205–7210CrossRefGoogle Scholar
  19. 19.
    Nakano M, Takahata M, Fujita H, Kiribayashi S, Yamaguchi K (2000) Chem Phys Lett 323:249–256CrossRefGoogle Scholar
  20. 20.
    Shuai Z, Brédas JL (1991) Phys Rev B 44:5962–5965CrossRefGoogle Scholar
  21. 21.
    Nakano M, Yamaguchi K (1994) Phys Rev A 50:2989–3004CrossRefGoogle Scholar
  22. 22.
    Takahata M, Nakano M, Yamada S, Yamaguchi K (2003) Int J Quant Chem 95:472–478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Materials Engineering Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations