Free Energy of Cell-Penetrating Peptide through Lipid Bilayer Membrane: Coarse-Grained Model Simulation

  • S. Kawamoto
  • M. Takasu
  • T. Miyakawa
  • R. Morikawa
  • T. Oda
  • H. Saito
  • S. Futaki
  • H. Nagao
  • W. Shinoda
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)


Cell-penetrating peptides can permeate through the plasma membrane. The permeation ability is useful for delivery of bioactive molecules. Experiments suggest that the binding between the guanidino group in the peptide and lipid headgroups is of crucial importance in the peptide permeation through lipid membranes. We investigate the free energy profile for the permeation of the peptide through the lipid bilayer membrane with changing the binding strength by a series of coarse-grained molecular dynamics simulation. We found that the energy barrier for the permeation has the minimum at the medium strength of the binding (∼2ε). Our result suggests that the appropriate attractive interaction between peptide and lipid headgroups enhances the permeation of the peptide across the lipid membranes.


Lipid Bilayer Membrane Free Energy Calculation Free Energy Barrier Thermodynamic Integration Free Energy Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepisky B, Barsoum J (1994) Proc Natl Acad Sci USA 91:664–668CrossRefGoogle Scholar
  2. 2.
    Futaki S (2000) J Biol Chem 276:5836–5840CrossRefGoogle Scholar
  3. 3.
    Nakase I, Takeuchi T, Tanaka G, Futaki S (2008) Adv Drug Deliv Rev 60:598–607CrossRefGoogle Scholar
  4. 4.
    Moriguchi R, Kogure K, Akita H, Futaki S, Miyagishi M, Taira K, Harashima H (2005) Int J Pharm 301:277–285CrossRefGoogle Scholar
  5. 5.
    Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Chembiochem 6:2126–2142CrossRefGoogle Scholar
  6. 6.
    Futaki S (2005) Adv Drug Deliv Rev 57:547–558CrossRefGoogle Scholar
  7. 7.
    Shinoda K, Shinoda W, Mikami M (2008) J Comput Chem 29:1912–1918CrossRefGoogle Scholar
  8. 8.
    Shinoda W, Shinoda K, Baba T, Mikami M (2005) Biophys J 89:3195–3202CrossRefGoogle Scholar
  9. 9.
    Jedlovszky P, Mezei M (2000) J Am Chem Soc 122:5125–5131CrossRefGoogle Scholar
  10. 10.
    Shinoda W, Mikami M, Baba T, Hato M (2004) J Phys Chem B 108:9346–9356CrossRefGoogle Scholar
  11. 11.
    Shinoda K, Shinoda W, Baba T, Mikami M (2004) J Chem Phys 121:9648–9654CrossRefGoogle Scholar
  12. 12.
    Marrink SJ, Berendsen HJC (1994) J Phys Chem 98:4155–4168CrossRefGoogle Scholar
  13. 13.
    Bemporad D, Essex JW, Luttmann C (2004) J Phys Chem B 108:4875–4884CrossRefGoogle Scholar
  14. 14.
    Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) J Biol Chem 271:18188–18193CrossRefGoogle Scholar
  15. 15.
    Prochiantz A (1996) Curr Opin Neurobiol 6:629–634CrossRefGoogle Scholar
  16. 16.
    Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S, Nagao H (2011) J Chem Phys 134:095103–095108CrossRefGoogle Scholar
  17. 17.
    Kawamoto S, Miyakawa T, Takasu M, Morikawa R, Oda T, Saito H, Futaki S, Nagao H (2011) Int J Quantum Chem 112:178–183CrossRefGoogle Scholar
  18. 18.
    Marrink SJ, de Vries AH, Tieleman DP (2009) Biochim Biophys Acta 1788:149–168CrossRefGoogle Scholar
  19. 19.
    Noguchi H (2009) J Phys Soc Jap 78:041007–041015CrossRefGoogle Scholar
  20. 20.
    Shinoda W, DeVane R, Klein ML (2008) Soft Matter 4:2454–2462CrossRefGoogle Scholar
  21. 21.
    Shinoda W, DeVane R, Klein ML (2010) J Phys Chem B 114:6836–6849CrossRefGoogle Scholar
  22. 22.
    Thoren PE, Persson D, Esbjorner EK, Goksor M, Lincoln P, Norden B (2004) Biochemistry 43:3471–3489CrossRefGoogle Scholar
  23. 23.
    Parrinello M, Rahman A (1980) Phys Rev Lett 45:1196–1199CrossRefGoogle Scholar
  24. 24.
    Grest GS, Kremer K (1986) Phys Rev A 33:3628–3631CrossRefGoogle Scholar
  25. 25.
    Liu Y, Nagle J (2004) Phys Rev E 69:040901–040904CrossRefGoogle Scholar
  26. 26.
    Wimley WC, White SH (1996) Nat Struct Biol 3:842–848CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Kawamoto
    • 1
    • 2
  • M. Takasu
    • 4
  • T. Miyakawa
    • 4
  • R. Morikawa
    • 4
  • T. Oda
    • 3
  • H. Saito
    • 3
  • S. Futaki
    • 5
  • H. Nagao
    • 3
  • W. Shinoda
    • 6
  1. 1.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  2. 2.Center for Computational SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma, KanazawasJapan
  4. 4.School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
  5. 5.Institute for Chemical ResearchKyoto UniversityKyotoJapan
  6. 6.Health Research Institute, Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)IkedaJapan

Personalised recommendations