Advertisement

Depth Profile Assignments of nm and μm Orders by Quantum Chemical Calculations for Chitosan Films Modified by Kr+ Beam Bombardment

  • K. Endo
  • H. Shinomiya
  • T. Ida
  • S. Shimada
  • K. Takahashi
  • Y. Suzuki
  • H. Yajima
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

Valence X-ray photoelectron and Raman spectra of a chitosan film modified by Kr+ion beam bombardment were analyzed from quantum chemical calculations. Experimental Raman spectra of the carbonized film with Kr+ion bombardment were found to be due to four component contributions of chitosan (Chito), diamond-like carbon (DLC), graphite (GP), and amorphous carbon (AC). By considering the four components contribution, we performed depth profile assignments in nm and μm ranges of the chitosan film in valence X-ray photoelectron spectroscopy and Raman shift experiments from calculations of the statistical average of orbital potential (SAOP) method of Amsterdam density functional (ADF) program, and B3LYP/6-31G(d, p) level in GAUSSIAN 09 software, respectively, using the model molecules. Carbonizations of the film by Kr+irradiation were obtained as Chito: DLC: AC: GP = 2:1:0.5:0.375 in the μm range from Raman shift analysis, while they were determined as Chito: DLC: AC: GP = 2:1:1:2 in the nm range from valence X-ray photoelectron spectral analysis.

Keywords

Amorphous Carbon Chitosan Film Model Molecule Photoionization Cross Section Vertical Ionization Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Muzzarelli RAA (1973) Natural chelating polymers, Pergamon, OxfordGoogle Scholar
  2. 2.
    Takahashi K, Shizume R, Uchida K, Yajima H (2009) J Biorheol 21:64CrossRefGoogle Scholar
  3. 3.
    Danielache S, Mizuno M, Shimada S, Endo K, Ida T, Takaoka K, Kurmaev EZ (2005) Polym J 37:21CrossRefGoogle Scholar
  4. 4.
    Tamura K, Endo K, Takagi Y, Kato K, Matsumoto D, Ida T, Mizuno M, Suzuki Y, Takahashi K, Uchida K, Yajima H (2008) J Surf Anal 14:344Google Scholar
  5. 5.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., WallingfordGoogle Scholar
  6. 6.
    Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2000) J Chem Phys 112:1344CrossRefGoogle Scholar
  7. 7.
    Van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421CrossRefGoogle Scholar
  8. 8.
    Dewar MJS, Dewar EG (1988) Theochem 180:1; Dewar MJS, Dewar EG, Healy HF, Stewart JJP (1985) J Am Chem Soc 107:3902Google Scholar
  9. 9.
    Becke AD (1992) J Phys Chem 97:9173CrossRefGoogle Scholar
  10. 10.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  11. 11.
    Foresman, JB, Frisch, AE (1996) Exploring chemistry with electronic structure methods: a guide to using Gaussian, 2nd Edn. Gaussian Inc., PittsburghGoogle Scholar
  12. 12.
    Scott, AP, Radom, L (1996) J Phys Chem 100:16502CrossRefGoogle Scholar
  13. 13.
    Gritsenko OV, van Leeuwen R, van Lenthe E, Baerends EJ (1995) Phys Rev A 51:1944CrossRefGoogle Scholar
  14. 14.
    Gritsenko OV, van Leeuwen R, van Lenthe E, Baerends EJ (1997) Int J Quant Chem 61:231CrossRefGoogle Scholar
  15. 15.
    Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2000) J Chem Phys 112:134CrossRefGoogle Scholar
  16. 16.
    van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421CrossRefGoogle Scholar
  17. 17.
    Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760CrossRefGoogle Scholar
  18. 18.
    Gelius U, Siegbahn K (1972) Faraday discus. Chem Soc 54:257; Gelius U (1974) J Electron Spectrosc Relat Phenom 5:985Google Scholar
  19. 19.
    Yeh J-J (1993) Atomic calculation of photoionization cross-section and asymmetry parameters. Gordon and Breach Science Publishers S.A. Langhorne, PennsylvaniaGoogle Scholar
  20. 20.
    Endo K, Kaneda Y, Okada H, Chong DP, Duffy P (1996) J Phys Chem 100:19455 ; Endo K, Maeda S, Aida M (1997) Polymer J 29:171 ; Endo K, Maeda S, Kaneda Y (1997) Polymer J 29:255Google Scholar
  21. 21.
    Ferraty AC, Robertson J (2004) Phil Trans R Soc Lond A 362:2477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • K. Endo
    • 1
  • H. Shinomiya
    • 1
  • T. Ida
    • 2
  • S. Shimada
    • 2
  • K. Takahashi
    • 1
  • Y. Suzuki
    • 3
  • H. Yajima
    • 1
  1. 1.Center for Colloid and Interface ScienceTokyo University of Science 1-3Shinjuku-kuJapan
  2. 2.Department of Chemistry, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Advanced Development and Supporting CenterSaitamaJapan

Personalised recommendations