Skip to main content

Variational Path Integral Molecular Dynamics Study of Small Para-Hydrogen Clusters

  • Conference paper
  • First Online:
Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

In the present study, energetics of small para-hydrogen clusters has been investigated by the variational path integral molecular dynamics method, which generates numerically the exact ground state of many-body systems. Cluster sizes used range from N = 4 to N = 20. While in a classical approximation the chemical potential of the hydrogen molecule has three minima in the size dependence, the quantum kinetic energy is found to wash out the minima except at N = 13. The chemical potential is decomposed into two contributions: one is from the quantum kinetic energy and the other from the potential energy. These two contributions tend to cancel out and generate a shallow minimum in the size dependence at N = 13. On the basis of the inherent structure analysis, the size dependence of the contribution from the potential energy is well described by the underlying potential energy landscape sampled by the quantum kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceperley DM (1995) Rev Mod Phys 67:279–355

    Article  CAS  Google Scholar 

  2. Lester WA (ed) (1997) Recent advances in quantum monte carlo methods. World Scientific, Singapore

    Google Scholar 

  3. Nightingale MP, Umrigar CJ (eds) (1999) Quantum monte carlo methods in physics and chemistry. Kluwer, Dordrecht

    Google Scholar 

  4. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33–83

    Article  CAS  Google Scholar 

  5. McMillan WL (1965) Phys Rev 138:A442–A451

    Article  Google Scholar 

  6. Anderson JB (1975) J Chem Phys 63:1499–1453

    Article  CAS  Google Scholar 

  7. Anderson JB (1976) J Chem Phys 65:4121–4127

    Article  CAS  Google Scholar 

  8. Sarsa A, Schmidt KE, Magro WR (2000) J Chem Phys 113:1366–1371

    Article  CAS  Google Scholar 

  9. Miura S (2009) Chem Phys Lett 428:165–170

    Article  Google Scholar 

  10. Miura S (2011) Comput Phys Commun 182:274–276

    Article  CAS  Google Scholar 

  11. Miura S (2012) Mol Sim 38:378–383

    Article  CAS  Google Scholar 

  12. Miura S (2012) In: Tanaka S, Rothstein S, Lester W (eds) Advances in quantum monte carlo. The ACS Symposium Series, vol 1094. American Chemical Society, Washington, DC, pp 177–186

    Google Scholar 

  13. Tuckerman ME, Hughes A (1999) In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, p 311–383

    Google Scholar 

  14. Tuckerman M, Berne BJ, Martyna GJ, Klein ML (1993) J Chem Phys 99:2796–2808

    Article  Google Scholar 

  15. Miura S (2011) In: Omata S, Svadlenka K, (eds) GAKUTO international series—mathematical sciences and applications, vol 34. Gakkotosho, Tokyo, pp 129–138

    Google Scholar 

  16. Baroni S, Moroni S (1999) Phys Rev Lett 82:4745–4748

    Article  CAS  Google Scholar 

  17. Feynman RP, (1972) Statistical mechanics. Addison-Wesley, Reading

    Google Scholar 

  18. Jang S, Jang S, Voth GA (2001) J Chem Phys 115:7832–7842

    Article  CAS  Google Scholar 

  19. Chandler D, Wolynes PG (1981) J Chem Phys 74:4078–4095

    Article  CAS  Google Scholar 

  20. Martyna GJ, Klein ML, Tuckerman M (1993) J Chem Phys 98:2796–2643

    Article  Google Scholar 

  21. Miura S, Tanaka J (2004) J Chem Phys 120:2160–2168

    Article  CAS  Google Scholar 

  22. Pérez A, Tuckerman ME (2011) J Chem Phys 135:064104(1)–064104(17)

    Google Scholar 

  23. Guardiola R, Navarro J (2006) Phys Rev A 74:025201(1)–025201(4)

    Article  Google Scholar 

  24. Silvera IF, Goldman VV (1978) J Chem Phys 69:4209–4213

    Article  CAS  Google Scholar 

  25. Silvera IF (1980) Rev Mod Phys 52:393–452

    Article  CAS  Google Scholar 

  26. Wales DJ, Doye JPK, Dullweber A, Hodges MP, Naumkin F. Calvo FY, Hernández-Rojas J, Middleton TF, The Cambridge Cluster Database. http://www-wales.ch.cam.ac.uk/CCD.html

  27. Stillinger FH, Weber TA (1983) Phys Rev A 28:2408–2416

    Article  CAS  Google Scholar 

  28. Whitlock PA, Ceperley DM, Chester GV, Kalos MH (1979) Phys Rev B 19:5598–5633

    Article  CAS  Google Scholar 

  29. Casulleras J, Boronat J (1995) Phys Rev B 52:3654–3661

    Article  CAS  Google Scholar 

  30. Marx D, Parrinello M (1996) J Chem Phys 104:4077–4082

    Article  CAS  Google Scholar 

  31. Shiga M, Tachikawa M, Miura S (2000) Chem Phys Lett 332:396–402

    Article  CAS  Google Scholar 

  32. Shiga M, Tachikawa M, Miura S (2001) J Chem Phys 115:9149–9159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Grant-in-Aid for Scientific Research (No. 23550011) from the Japan Society for the Promotion of Science and by the Strategic Program for Innovative Research (SPIRE), MEXT, and the Computational Materials Science Initiative (CMSI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Miura, S. (2012). Variational Path Integral Molecular Dynamics Study of Small Para-Hydrogen Clusters. In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_23

Download citation

Publish with us

Policies and ethics