Validation of Quantum Chemical Calculations for Sulfonamide Geometrical Parameters

Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

Sulfonamide is one of the most important chemical groups in drug design because sulfonamide derivatives are stable in living cells and water soluble. In this study, we assessed the validity of quantum chemical methods and basis sets for the geometrical parameters of various sulfonamides compared to crystallographic data. Introducing f-type polarization functions into basis sets improved the geometry optimizations using Hartree-Fock, MP2, and B3LYP, indicating that f-type polarization functions play an important role in the description of chemical bonds in sulfonamide derivatives.

Keywords

Torsion Angle Root Mean Square Deviation Quantum Chemical Method Sulfonamide Derivative B3LYP Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present study was performed under the Cooperative Research Program of the Institute for Protein Research, Osaka University. Parts of the computational results in this research were obtained using supercomputing resources at the Cyberscience Center, Tohoku University; the Research Center for Computational Science, Okazaki; and the Cybermedia Center at Osaka University. Yu Takano is grateful to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for the Grant-in-Aid for Scientific Research on Innovative Areas “Materials Design through Computics” (23104506). Akifumi Oda was supported by a Grant-in-Aid for Scientific Research (23790137) from the Japan Society for the Promotion of Science.

References

  1. 1.
    Drew J (2000) Drug discovery: a historical perspective. Science 287:1960–1964CrossRefGoogle Scholar
  2. 2.
    Supuran CT, Innocenti A, Mastrolorenzo A, Scozzafava A (2004) Antiviral sulfonamide derivatives. Mini Rev Med Chem 4:189–200CrossRefGoogle Scholar
  3. 3.
    Maren TH (1976) Relations between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 16:309–327CrossRefGoogle Scholar
  4. 4.
    Supuran CT, Casini A, Scozzafava A (2003) Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med Res Rev 23:535–558CrossRefGoogle Scholar
  5. 5.
    Supuran CT (2002) Indisulam. IDrugs 5:1075–1079Google Scholar
  6. 6.
    Ornstein PL, Arnold MB, Allen NK, Bleisch T, Borromeo PS, Lugar CW, Leander JD, Lodge D, Schoepp DD (1996) Structure-activity studies of 6-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 2. Effects of distal acid bioisosteric substitution, absolute stereochemical preferences, and in vivo activity. J Med Chem 39:2232–2244CrossRefGoogle Scholar
  7. 7.
    Johansson A, Poliakov A, Åkerblom E, Wiklund K, Lindeberg G, Winiwarter S, Danielson UH, Samuelsson B, Hallberg A (2003) Acyl sulfonamides as potent protease inhibitors of the hepatitis C virus full-length NS3 (protease-helicase/NTPase): a comparative study of different C-terminals. Bioorg Med Chem 11:2551–2568CrossRefGoogle Scholar
  8. 8.
    Rönn R, Gossas T, Sabnis YA, Daoud H, Åkerblom E, Danielson UH, Sandström A (2007) Evaluation of a diverse set of potential P1 carboxylic acid bioisosteres in hepatitis C virus NS3 protease inhibitors. Bioorg Med Chem 15:4057–4068CrossRefGoogle Scholar
  9. 9.
    Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  10. 10.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  11. 11.
    Ohwada T (2001) Nitrogen pyramidal amides and related compounds. Yakugaku Zasshi 121:65–77CrossRefGoogle Scholar
  12. 12.
    Parkin A, Collins A, Gilmore CJ, Wilson CC (2008) Using small molecule crystal structure data to obtain information about sulfonamide conformation. Acta Crystallogr B 64:66–77CrossRefGoogle Scholar
  13. 13.
    Taft CA, da Silva VB, de Paula da Silva CHT (2008) Current topics in computer-aided drug design. J Pharm Sci 97:1089–1098CrossRefGoogle Scholar
  14. 14.
    Cai C, Li Z, Wang W, Chen Y (2004) Advances in modeling of biomolecular interactions. Acta Pharmacol Sin 25:1–8Google Scholar
  15. 15.
    Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem Biol Interact 171:165–176CrossRefGoogle Scholar
  16. 16.
    Clark M, Cramer RDI, van den Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10:982–1012CrossRefGoogle Scholar
  17. 17.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  18. 18.
    Bindal RD, Golab JT, Katzenellenbogen JA (1990) Ab initio calculations on N-methylmethanesulfonamide and methyl methanesulfonate for the development of force field torsional parameters and their use in the conformational analysis of some novel estrogens. J Am Chem Soc 112:7861–7868CrossRefGoogle Scholar
  19. 19.
    Nicholas JB, Vance R, Martin E, Burke BJ, Hopfinger AJ (1991) A molecular mechanics valence force field for sulfonamides derived by ab initio methods. J Phys Chem 95:9803–9811CrossRefGoogle Scholar
  20. 20.
    Liang G, Bays JP, Bowen JP (1997) Ab initio calculations and molecular mechanics (MM3) force field development for sulfonamide and its alkyl derivatives. J Mol Struct (THEOCHEM) 401:165–179CrossRefGoogle Scholar
  21. 21.
    Vijay D, Priyakumar UD, Sastry GN (2004) Basis set and method dependence of the relative energies of C2S2H2 isomers. Chem Phys Lett 383:192–197CrossRefGoogle Scholar
  22. 22.
    Denis PA (2005) Basis set requirements for sulfur compounds in density functional theory: a comparison between correlation-consistent, polarized-consistent, and Pople-type basis sets. J Chem Theory Comput 1:900–907CrossRefGoogle Scholar
  23. 23.
    Niu S, Nichols JA, Ichiye T (2009) Optimization of spin-unrestricted density functional theory for redox properties of rubredoxin redox site analogues. J Chem Theory Comput 5:1361–1368CrossRefGoogle Scholar
  24. 24.
    Gregory DD, Jenks WS (2003) Computational investigation of vicinal disulfoxides and other sulfinyl radical dimers. J Phys Chem A 107:3414–3423CrossRefGoogle Scholar
  25. 25.
    Elguero J, Goya P, Rozas I (1989) An ab initio comparative study of the electronic properties of sulfonamides and amides. J Mol Struct (THEOCHEM) 184:115–129CrossRefGoogle Scholar
  26. 26.
    Heyd J, Thiel W, Weber W (1997) Rotation and inversion barriers in N-methylmethanesulfonamide from ab initio calculations. J Mol Struct (THEOCHEM) 391: 125–130CrossRefGoogle Scholar
  27. 27.
    Stewart JJP (2001) MOPAC2002 1.0. Fujitsu Ltd, TokyoGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  29. 29.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER9. University of California, San FranciscoGoogle Scholar
  30. 30.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J Comput Chem 21:132–146CrossRefGoogle Scholar
  31. 31.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260CrossRefGoogle Scholar
  32. 32.
    Higgs TC, Parkin A, Parsons S, Tasker PA (2002) N-Methylmethanesulfonamide at 150 K. Acta Crystallogr E 58:o523–o525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesTohoku Pharmaceutical UniversityAoba-kuJapan
  2. 2.Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
  3. 3.Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations