Ab initio Study of the Potential Energy Surface and Stability of the Li2+(X2Σg+) Alkali Dimer in Interaction with a Xenon Atom

  • S. Saidi
  • C. Ghanmi
  • F. Hassen
  • H. Berriche
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)


The potential energy surfaces (PES) and the corresponding spectroscopic constants describing the interaction between the Li 2 + (X2Σ g + ) alkali dimer in its ground state and the xenon atom are evaluated very accurately including the three-body interactions. We have used an accurate ab initio approach based on nonempirical pseudopotential, parameterized l-dependent polarization potential, and an analytic potential form for the Li+Xe interaction. The potential energy surfaces of the interaction Li 2 + (X2Σ g + )-Xe have been computed for a fixed distance of the Li 2 + (X2Σ g + ) and for an extensive range of the remaining two Jacobi coordinates, R and γ. The use of the pseudopotential technique has reduced the number of active electrons of Li 2 + (X2Σ g + )Xe complex to only one electron. The core-core interaction for Li+Xe is included using the (CCSD(T)) accurate potential of Lozeille et al. (Phys Chem Chem Phys 4:3601, 2002). This numerical potential is adjusted using the analytical form of Tang and Toennies. Moreover, the interaction forces and the potential anisotropy are analyzed in terms of Legendre polynomials analytical representation of the potential energy surface (PES). To our best knowledge, there are no experimental nor theoretical study on the collision between the Li 2 + (X2Σ g + ) ionic alkali dimer and the xenon atom. These results are presented for the first time.


Equilibrium Distance Ionic Molecule Spectroscopic Constant Xenon Atom Internuclear Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Advanced Materials Center and KACST through the Long-Term Comprehensive National Plan for Science, Technology and Innovation Program (Project no. 10-ADV1164-07).


  1. 1.
    Toennies JP, Vilesov AF (1998) Ann Rev Phys Chem 49:1CrossRefGoogle Scholar
  2. 2.
    Toennies JP, Vilesov AF, Whaley KB (2001) Phys Today 54:31CrossRefGoogle Scholar
  3. 3.
    Stienkemeier F, Vilesov AF (2001) J Chem Phys 115:10119CrossRefGoogle Scholar
  4. 4.
    Toennies JP, Vilesov AF (2004) Angew Chem Int Ed 43:2622CrossRefGoogle Scholar
  5. 5.
    Stienkemeier F, Lehmann KK (2006) J Phys B: Atom Mol Opt Phys 39:R127CrossRefGoogle Scholar
  6. 6.
    Buchachenko A, Halberstadt N, Lepetit B, Roncero O (2003) Int Rev Phys Chem 22:153CrossRefGoogle Scholar
  7. 7.
    García-Vela A (1998) J Chem Phys 108:5755CrossRefGoogle Scholar
  8. 8.
    Slavíček P, Roeselová M, Jungwirth P, Schmidt B (2001) J Chem Phys 114:1539CrossRefGoogle Scholar
  9. 9.
    Fuchs M, Toennies JP (1986) J Chem Phys 85:7062CrossRefGoogle Scholar
  10. 10.
    Douady J, Jacquet E, Giglio E, Zanuttini D, Gervais B (2008) J Chem Phys 129:184303CrossRefGoogle Scholar
  11. 11.
    Marinetti F, Uranga-Piňa L, Coccia E, López-Durán D, Bodo E, Gianturco FA (2007) J Phys Chem A 111:12289CrossRefGoogle Scholar
  12. 12.
    Bodo E, Yurtsever E, Yurtsever M, Gianturco FA (2006) J Chem Phys 124:074320CrossRefGoogle Scholar
  13. 13.
    Bodo E, Gianturco FA, Yurtsever E, Yurtsever M (2005) Mol Phys 103:3223CrossRefGoogle Scholar
  14. 14.
    Bodo E, Sebastianelli F, Gianturco FA, Yurtsever E, Yurtsever M (2003) J Chem Phys 120:9160CrossRefGoogle Scholar
  15. 15.
    Bodo E, Gianturco FA, Sebastianelli F, Yurtsever E, Yurtsever M (2004) Theor Chem Acc 112:263CrossRefGoogle Scholar
  16. 16.
    Bodo E, Gianturco FA, Yurtsever E (2005) J Low Temp Phys 138:259CrossRefGoogle Scholar
  17. 17.
    Bouzouita H, Ghanmi C, Berriche H (2006) J Mol Struct (THEOCHEM) 777:75CrossRefGoogle Scholar
  18. 18.
    Berriche H (2003) J Mol Struct (THEOCHEM) 663:101CrossRefGoogle Scholar
  19. 19.
    Berriche H, Ghanmi C, Ben Ouada H (2005) J Mol Spectr 230:161CrossRefGoogle Scholar
  20. 20.
    Ghanmi C, Berriche H, Ben Ouada H (2006) J Mol Spectr 235:158CrossRefGoogle Scholar
  21. 21.
    Berriche H, Ghanmi C, Farjallah M, Bouzouita H (2008) J Comp Method Sci Eng 8:297Google Scholar
  22. 22.
    Barthelat JC, Durand P (1975) Theor Chim Acta 38:283: (1978) Gazz Chim Ital 108:225CrossRefGoogle Scholar
  23. 23.
    Müller W, Flesh J, Meyer W (1984) J Chem Phys 80:3297CrossRefGoogle Scholar
  24. 24.
    Foucrault M, Millié P, Daudey JP (1992) J Chem Phys 96:1257CrossRefGoogle Scholar
  25. 25.
    Soldán P, Lee EPF, Wright TG (2001) Phys Chem Chem Phys 3:4661CrossRefGoogle Scholar
  26. 26.
    Lozeille J, Winata E, Soldán P, Lee EPF, Viehland LA, Wright TG (2002) Phys Chem Chem Phys 4:3601CrossRefGoogle Scholar
  27. 27.
    Tang KT, Toennies JP (1984) J Chem Phys 80:3726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Saidi
    • 1
    • 2
  • C. Ghanmi
    • 1
    • 2
  • F. Hassen
    • 3
  • H. Berriche
    • 1
    • 2
  1. 1.Laboratoire des Interfaces et Matériaux Avancés, Département de Physique, Faculté des SciencesUniversité de MonastirMonastirTunisia
  2. 2.Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Faculté des SciencesUniversité de MonastirMonastirTunisie

Personalised recommendations