Advertisement

Advanced Relativistic Energy Approach to Radiative Decay Processes in Multielectron Atoms and Multicharged Ions

  • Alexander V. Glushkov
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

We present the generalized advanced energy approach to relativistic calculations of the radiative decay (transition) probabilities in neutral multielectron atomic systems and multicharged ions. The approach is based on the Gell-Mann and Low S-matrix formalism and relativistic many-body perturbation theory (PT), using an optimized one-quasiparticle representation and an accurate account of relativistic and correlation effects. In the relativistic case, the Gell-Mann and Low formula expresses an energy shift \( \Delta E \) through the electrodynamical scattering matrix including an interaction with a laser field as a photon vacuum field. The last case is corresponding to traditional definition of the radiative transition probabilities for atoms and ions. The results of relativistic calculation of the radiative transition probabilities and oscillator strengths are presented for a number of heavy atoms and multicharged ions and compared with available theoretical and experimental data. The role of the correlation corrections and gauge non-invariant contributions to the radiation widths for different atoms and ions is discussed.

Keywords

Oscillator Strength Polarization Diagram Radiation Width Photon Propagator Radiative Transition Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is very thankful to Prof. Kiyoshi Nishikawa for his invitation to make a contribution to the QSCP-XVI workshop (Japan). The author is also very grateful to Profs. Elena P. Ivanova, Leonid N. Ivanov and Vladilen S. Letokhov (ISAN, Troitsk) for a many-year cooperation. The support of the ISAN (Russian Academy of Sciences, Troitsk) and of the University of Freiburg (Germany) is acknowledged. Comments of the reviewers are acknowledged too.

References

  1. 1.
    Martin W (2004) NIST Spectra database, version 2.0. NIST, Washington, DC; (http://physics.nist.gov.asd); Moore C (1987) NBS Spectra database. NBS, Washington, DC
  2. 2.
    Weiss A (1977) J Quant Spectr Radiat Transf 18:481; (1993) Phys Scripta T65:188; Grance M (1973) Atomic Data 5:185Google Scholar
  3. 3.
    Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation, vol 40, Springer series on atomic, optical, and plasma physics. Springer, Berlin, pp 587–626Google Scholar
  4. 4.
    Schwerdtfeger P (ed) (2002) Relativistic electronic structure theory. Theoretical and computational chemistry series, vol 11, part1, Springer; Schwerdtfeger P (ed) (2004) vol 12, part 2. SpringerGoogle Scholar
  5. 5.
    Wilson S (2007) In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Recent advances theoretical physics and chemistry systems, vol 16, Progress in theoretical chemistry and physics. Springer, Berlin, pp 11–80Google Scholar
  6. 6.
    Bell KL, Berrington KA, Crothers DSF, Hibbert A, Taylor KT (1999) Bertha: 4-Component relativistic molecular quantum mechanics. In: Supercomputing, collision processes, and application, Physics of atoms and molecules. Kluwer, New York, pp 213–224Google Scholar
  7. 7.
    Jensen H, Saue T, Visscher L with contr. by Bakken V, Eliav E, Enevoldsen T, Fleig T, Fossgaard O, Helgaker T, Laerdahl J, Larsen C, Norman P, Olsen J, Pernpointner M, Pedersen J, Ruud K, Salek P, van Stralen J, Thyssen J, Visser O, Winther T (2004) DIRAC Code, a relativistic ab initio electronic structure program, Release DIRAC4.0.-2004; (http://dirac.chem.sdu.dk)
  8. 8.
    Froese-Fischer C (1989) Phys Rev A 39:963; Froese Fischer C, Tachiev G (2004) Atom Data Nucl Data Tables 87:1; Froese Fischer C, Tachiev G, Irimia A (2006) Atom Data Nucl Data Tables 92:607Google Scholar
  9. 9.
    Klapish MA (1971) Comp Phys Commun 2:239; Laughlin C, Victor GA (1988) Adv Atom Mol Phys 25:163Google Scholar
  10. 10.
    Cheng K, Kim Y, Desclaux J (1979) Atom Data Nucl Data Tables 24:11; Indelicato P, Desclaux JP (1993) Phys Scripta T 46:110; Saha B, Fritzsche S (2005) J Phys B Atom Mol Opt Phys 38:1161Google Scholar
  11. 11.
    Bieron J, Froese-Fischer C, Fritzsche S, Pachucki K (2004) J Phys B Atom Mol Opt Phys 37:L305; Bieron J, Pyykkö P, Jonsson P (2005) Phys Rev A 71:012502; Bieron J, Pyykkő P (2005) Phys Rev A 71:032502Google Scholar
  12. 12.
    Feller D, Davidson ER (1981) J Chem Phys 74:3977; Dietz K, Heβ BA (1989) Phys Scripta 39:682Google Scholar
  13. 13.
    Johnson WR, Lin CD, Cheng KT (1980) Phys Scr 21:409; Johnson WR, Sapistein J, Blundell S (1988) Phys Rev A 37:307; Luc-Koenig E, Lyras A, Lecomte J-M, Aymar M (1997) J Phys B Atom Mol Opt Phys 30:5213Google Scholar
  14. 14.
    Dzuba V, Flambaum V, Silvestrov P, Sushkov O (1991) Phys Rev A 44:2828; Dzuba V, Flambaum V, Safranova MS (2006) Phys Rev A 73:022112Google Scholar
  15. 15.
    Safranova UI, Safranova MS, Johnson W (2005) Phys Rev A 71:052506; Safronova MS, Johnson WR, Safranova UI, Cowan T (2006) Phys Rev A 74:022504Google Scholar
  16. 16.
    Quinet P, Argante C, Fivet V, Terranova1 C, Yushchenko AV, Biémont É (2007) Astrophys Astron 474:307; Biémont É, Fivet V, Quinet P (2004) J Phys B Atom Mol Opt Phys 37:4193; Khetselius OYu (2009) Int J Quant Chem 109:3330; (2009) Phys Scripta T135:014023Google Scholar
  17. 17.
    Sapirstein J, Cheng KT (2005) Phys Rev A 71:022503; Shabaev VM, Tupitsyn II, Pachucki K, Plunien G, Yerokhin VA (2005) Phys Rev A 72:062105; Yerokhin V, Artemyev AN, Shabaev VM (2007) Phys Rev A 75:062501Google Scholar
  18. 18.
    Kohn W, Sham LJ (1964) Phys Rev A 140:1133; Hohenberg P, Kohn W (1964) Phys Rev B 136:864; Gross EG, Kohn W (2005) Exchange-correlation functionals in density functional theory. Plenum, New YorkGoogle Scholar
  19. 19.
    Gidopoulos N, Wilson S (eds) (2004) The fundamentals of electron density, density matrix and density functional theory in atoms, molecules and the solid state, vol 14, Progress in theoretical chemistry and physics. Springer, Berlin, p 1Google Scholar
  20. 20.
    Kaldor E, Eliav E, Landau A (2004) In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory. World Scientific, Singapore, p 283Google Scholar
  21. 21.
    Hibbert A (1982) Adv Atom Mol Phys 18:309; Hibbert A, Hansen JE (1994) J Phys B Atom Mol Opt Phys 27:3325; Kunisz MD (1982) Acta Phys Polon A 62:285; Migdalek J (1976) Can J Phys 54:130; Ostrovsky VN, Sheynerman SA (1989) Opt Spectr 67:16; Anderson EK, Anderson EM (1983) Opt Spectr 54:955Google Scholar
  22. 22.
    Ivanov LN, Ivanova EP (1979) Atom Data Nucl Data Tabl 24:95; Ivanov LN, Letokhov VS (1985) Com Mod Phys D Atom Mol Phys 4:169; Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 164:317Google Scholar
  23. 23.
    Ivanova EP, Ivanov LN, Glushkov AV, Kramida A (1985) Phys Scripta 32:512; Ivanova EP, Glushkov AV (1985) Opt Spectr 58:961; (1986) J Quant Spectr Rad Transfer 36:127; (1986) In Safronova UI (ed) Spectroscopy of multicharged ions. Nauka, Moscow, pp 5–195; Glushkov AV, Malinovskaya SV (1988) In Safronova UI (ed) Many-body effects in atoms. Nauka, Moscow, pp 73–189Google Scholar
  24. 24.
    Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365; Ivanova EP, Gulov AV (1991) Atom Dat Nuc Dat Tabl 49:1; Ivanova EP, Grant IP (1998) J Phys B Atom Mol Opt Phys 31:2871; Ivanova EP, Zinoviev NA (1999) Quant Electr 29:484; (2001) Phys Lett A 274:239Google Scholar
  25. 25.
    Labzovsky LN (1969) JETP 57:663; Braun MA, Dmitriev YuYu, Labzovsky LN (1969) JETP 5:2189; Tolmachev VV (1969) Adv Quant Chem 4:331Google Scholar
  26. 26.
    Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 152–164; Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33; Glushkov AV, Ivanov LN (1992) Preprint of ISAN, AS N-1, Moscow-Troitsk; (1993) J Phys B Atom Mol Opt Phys 26:L379Google Scholar
  27. 27.
    Glushkov AV (1990) J Appl Spectr 52:297; (1992) 56:13; (1992) 56:482; (1991) Opt Spectr 70:952; (1991) 71:395; (1992) 72:55; (1992) 72:542; (1992) JETP Lett 55:97; (1991) Russian Phys J 34:34; (1992) 35:3; Malinovskaya SV, Glushkov AV (1992) Russian Phys J 35:999Google Scholar
  28. 28.
    Glushkov AV, Khetselius OYu, Loboda AV, Svinarenko AA (2008) In Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol 18. Springer, Berlin, pp 541–588; Glushkov AV, Loboda AV (2007) J Appl Spectr (Springer) 74:305Google Scholar
  29. 29.
    Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) In Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Progress in theoretical chemistry and physics, vol. 18. Springer, Berlin, p 523; (2008) Eur Phys J ST 160:195; (2008) Mol Phys 106:1257 (2008)Google Scholar
  30. 30.
    Glushkov AV, Khetselius OY, Lovett L (2010) In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures, vol 20, Progress in theoretical chemistry and physics. Springer, Berlin, pp 125–172Google Scholar
  31. 31.
    Glushkov AV, Malinovskaya SV, Vitavetskaya LA, Dubrovskaya YV, Khetselius OY (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in the theoretical physics and chemistry systems, vol 15, Progress in theoretical chemistry and physics. Springer, Berlin, pp 301–308Google Scholar
  32. 32.
    Glushkov AV, Khetselius OY, Svinarenko AA (2012) In: Hoggan PE, Brandas E, Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry and physics, vol 22, Progress in theoretical chemistry and physics. Springer, Berlin, pp 51–70Google Scholar
  33. 33.
    Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) In Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 126–142; Glushkov AV, Khetselius OYu, Loboda AV, Gurnitskaya EP (2007) In Krewald S, Machner H (eds) Meson-Nucleon physics and the structure of the nucleon. IKP, Juelich, Germany, SLAC eConf C070910, Menlo Park, CA, USA 2:186; Glushkov AV (2007) ibid. 2:111Google Scholar
  34. 34.
    Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova YuG, Khetselius OYu, Svinarenko AA (2004) Nucl Phys A 734S:21; Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quantum Chem 104:562; Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OYu (2006) In Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems. Progress in theoretical chemistry and physics, vol 15. Springer, Berlin, pp 285–300Google Scholar
  35. 35.
    Glushkov AV, Khetselius OY, Gurnitskaya EP, Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in Quantum Systems in Chemistry and Physics, vol 18, Progress in Theoretical Chemistry and Physics. Springer, Berlin, pp 501–522Google Scholar
  36. 36.
    Curtis L (1987) Phys Rev A 35:2089; (1989) Phys Rev A 40: 6958; (1991) Phys Scripta 43:137; (1995) Phys Rev A 51:4574; Li Y, Pretzler G, Fill EE (1995) Phys Rev A 52:R3433; Safronova UI, Cowan TM, Safronova MS (2005) J Phys B Atom Mol Opt Phys 38:2741; Ishikawa Y, Lopez JM, Trabert E (2009) Phys Scripta 79:025301Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Odessa State University – OSENUOdessaUkraine
  2. 2.ISAN, Russian Academy of SciencesTroitskRussia

Personalised recommendations