Skip to main content

Ab Initio Path Integral Molecular Dynamics Simulations of F 2 H and F 2 H 3 +

  • Conference paper
  • First Online:

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 26))

Abstract

The quantum nature of the strong hydrogen bonds for the F2Hand F2H3 +ions and their deuterated isotopomers at the room temperature has been studied using ab initio path integral molecular dynamics (PIMD) simulations. It is found that, for both of these ions, the hydrogen-bonded H/D atoms largely fluctuate around the central position of two F atoms. The average FH/FF distances of F2Hand F2H3 +are longer than the average FD/FF distances of F2Dand F2D3 +due to the primary/secondary isotope effects, which stem from the difference of the quantum nature of H and D nuclei. These results are compared with the family of Zundel-type ions, O2H3 , N2H5 , O2H5 +, and N2H7 +, which have been studied previously with the same ab initio PIMD approach. A comparison is also made with the previous experimental and ab initio vibrational configuration interaction results of F2H.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  2. Meot-Ner M (2005) Chem Rev 105:213

    Article  CAS  Google Scholar 

  3. Marx D (2007) Chem Phys Chem 7:1848

    Article  Google Scholar 

  4. Marx D, Chandra A, Tuckerman ME (2010) Chem Rev 110:2174

    Article  CAS  Google Scholar 

  5. Tuckerman ME, Marx D, Klein ML, Parrinello M (1997) Science 275:817

    Article  CAS  Google Scholar 

  6. Tachikawa M, Shiga M (2005) J Am Chem Soc 127:11908

    Article  CAS  Google Scholar 

  7. McCoy AB, Huang X, Carter S, Landeweer MY, Bowman JM (2005) J Chem Phys 122: 1857472

    Google Scholar 

  8. Karpfen A, Yanoviskii O (1994) J Mol Struct (THEOCHEM) 307:81

    Article  Google Scholar 

  9. Sophy KB, Kuo J-L (2009) J Chem Phys 131:224307

    Article  CAS  Google Scholar 

  10. Asmis KR, Yang Y, Santambrogio G, Br\(\mathrm{\ddot{u}}\)mmer M, Roscioli JR, McCunn LR, Johnson MA, K\(\mathrm{\ddot{u}}\)hn O (2007) Angew Chem Int Ed 46:8691

    Google Scholar 

  11. Ishibashi H, Hayashi A, Shiga M, Tachikawa M (2008) Chem Phys Chem 9:383

    Article  CAS  Google Scholar 

  12. Yang Y, K\(\mathrm{\ddot{u}}\)hn O (2011) Chem Phys Lett 505:1

    Google Scholar 

  13. Kawaguchi K, Hirota E (1986) J Chem Phys 84:2953

    Article  CAS  Google Scholar 

  14. Hunt RD, Andrews L (1987) J Chem Phys 87:6819

    Article  CAS  Google Scholar 

  15. Kawaguchi K, Hirota E (1987) J Chem Phys 87:6838

    Article  CAS  Google Scholar 

  16. Kawaguchi K, Hirota E (1996) J Mol Struct 352/353:389

    Google Scholar 

  17. Epa C, Thorson WR (1990) J Chem Phys 93:3773

    Article  CAS  Google Scholar 

  18. Del Bene JE, Jordan MJ (1999) Spectrochim Acta A 55:719

    Article  Google Scholar 

  19. Swalina C, Hammes-Schiffer S (2005) J Phys Chem A 109:10410

    Article  CAS  Google Scholar 

  20. Elghobashi N, Gonz\(\mathrm{\acute{a}}\)lez L (2006) J Chem Phys 124:174308

    Google Scholar 

  21. Hirata S, Yagi K, Perera SA, Yamazaki S, Hirao K (2008) J Chem Phys 128:214305

    Article  Google Scholar 

  22. Hirata S, Miller EB, Ohnishi Y, Yagi K (2009) J Phys Chem A 113:12461

    Article  CAS  Google Scholar 

  23. McCoy AB, Huang X, Catrter S, Bowman JM (2005) J Chem Phys 123:064317

    Article  Google Scholar 

  24. Yang Y, K\(\mathrm{\ddot{u}}\)hn O (2008) Z Phys Chem 222:1375

    Google Scholar 

  25. Suzuki K, Shiga M, Tachikawa M (2008) J Chem Phys 129:144310

    Article  Google Scholar 

  26. Shiga M, Suzuki K, Tachikawa M (2010) J Chem Phys 132:114104

    Article  Google Scholar 

  27. Yagi K, Hirata S, Hirao K, (2007) Theor Chem Acc 118:681

    Article  CAS  Google Scholar 

  28. Benoit M, Marx D (1998) Nature 392:258

    Article  CAS  Google Scholar 

  29. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) Nature 397:601

    Article  CAS  Google Scholar 

  30. Tuckerman ME, Marx D, Parrinello M (2002) Nature 417:925

    Article  CAS  Google Scholar 

  31. Shiga M, Tachikawa M, Miura S (2000) Chem Phys Lett 332:396

    Article  CAS  Google Scholar 

  32. Hayashi A, Shiga M, Tachikawa M (2008) Chem Phys Lett 410:54

    Article  Google Scholar 

  33. Koizumi A, Suzuki K, Shiga M, Tachikawa M (2011) J Chem Phys 134:031101

    Article  Google Scholar 

  34. Li X-Z, Walker B, Michaelides A (2011) Proc Natl Acad Sci USA 108:6369

    Article  CAS  Google Scholar 

  35. Shiga M, Tachikawa M, Miura S (2001) J Chem Phys 115:9149

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, revision C.02, Gaussian Inc., Pittsburgh

    Google Scholar 

  37. Martyna GJ, Tuckerman ME, Klein ML (1992) J Chem Phys 97:2635

    Article  Google Scholar 

  38. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Mol Phys 87:1117

    Article  CAS  Google Scholar 

  39. Tuckerman ME, Marx D, Klein ML, Parrinello M (1996) J Chem Phys 104:5579

    Article  CAS  Google Scholar 

  40. Flyvbjerg H, Petersen HG (1989) J Chem Phys 91:461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Grant-in-Aid for Scientific Research and for the Priority Area by Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tachikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Suzuki, K., Ishibashi, H., Yagi, K., Shiga, M., Tachikawa, M. (2012). Ab Initio Path Integral Molecular Dynamics Simulations of F 2 H and F 2 H 3 + . In: Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P. (eds) Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5297-9_10

Download citation

Publish with us

Policies and ethics