Skip to main content

The Finite Element Immersed Boundary Method for the Numerical Simulation of the Motion of Red Blood Cells in Microfluidic Flows

  • Chapter
Book cover Numerical Methods for Differential Equations, Optimization, and Technological Problems

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 27))

Abstract

We study the mathematical modeling and numerical simulation of the motion of red blood cells (RBCs) subject to an external incompressible flow in a microchannel. RBCs are viscoelastic bodies consisting of a deformable elastic membrane enclosing an incompressible fluid. We study two versions of the Finite Element Immersed Boundary Method (FE-IB), a semi-explicit scheme that requires a CFL-type stability condition and a fully implicit scheme that is unconditionally stable and numerically realized by a predictor-corrector continuation strategy featuring an adaptive choice of the time step sizes. The performance of the two schemes is illustrated by numerical simulations for various scenarios including the tank treading motion in microchannels and the motion through thin capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abkarian M, Lartigue C, Viallat A (2002) Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys Rev Lett 88(6):068103

    Article  Google Scholar 

  2. Anadere I, Chmiel H, Hess H, Thurston GB (1979) Clinical blood rheology. Biorheology 16(3):171–178

    Google Scholar 

  3. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Comput Struct 81(8–11):491–501

    Article  MathSciNet  Google Scholar 

  4. Boffi D, Gastaldi L, Heltai L (2007) Numerical stability of the finite element immersed boundary method. Math Models Methods Appl Sci 17(10):1479–1505

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  6. Chien S (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168:977–979

    Article  Google Scholar 

  7. Chien S (1987) Red cell deformability and its relevance to blood flow. Annu Rev Physiol 49:177–192

    Article  Google Scholar 

  8. Chmiel H, Anadere I, Walitza E (1990) The determination of blood viscoelasticity in clinical hemorheology. Clinical Hemorheology 10:363–374

    Google Scholar 

  9. Cokelet GR (1980) Rheology and hemodynamics. Annu Rev Physiol 42:311–324

    Article  Google Scholar 

  10. Deuflhard P (2004) Newton methods for nonlinear problems. Affine invariance and adaptive algorithms. Springer, Berlin

    MATH  Google Scholar 

  11. Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in simple shear flow. Phys Fluids 10:1834–1845

    Article  Google Scholar 

  12. Fischer T, Schmid-Schönbein H (1977) Tank treading motion of red blood cell membranes in viscometric flow: behavior of intracellular and extracellular markers. Blood Cells 3:351–365

    Google Scholar 

  13. Fischer TM, Stöhr-Liesen M, Schmid-Schönbein H (1978) The red cell as a fluid droplet—tank-treading like motion of the human erythrocyte membrane in shear flow. Science 202:894–896

    Article  Google Scholar 

  14. Franke T, Hoppe RHW, Linsenmann C, Schmid L, Willbold C, Wixforth A (2011) Numerical simulation of the motion and deformation of red blood cells and vesicles in microfluidic flows. Comput Vis Sci 14(4):167–180

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoppe RHW, Linsenmann C (2011) An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method. Submitted to J Comp Phys

    Google Scholar 

  16. Kantsler V, Steinberg V (2005) Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys Rev Lett 95:258101

    Article  Google Scholar 

  17. Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech 120:27–47

    Article  MATH  Google Scholar 

  18. Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J Comput Phys 228(22):8427–8445

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement. J Comput Phys 229(13):5208–5227

    Article  MathSciNet  MATH  Google Scholar 

  20. Mori Y, Peskin CS (2008) Implicit second-order immersed boundary methods with boundary mass. Comput Methods Appl Mech Eng 197(25–28):2049–2067

    Article  MathSciNet  MATH  Google Scholar 

  21. Newren EP, Fogelson AL, Guy RD, Kirby RM (2007) Unconditionally stable discretizations of the immersed boundary equations. J Comp Physiol 222(2):702–719

    MathSciNet  MATH  Google Scholar 

  22. Noguchi H, Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93:258102

    Article  Google Scholar 

  23. Pan T-W, Wang T (2009) Dynamical simulation of red blood cell rheology in microvessels. Int J Numer Anal Model 6(3):455–473

    MathSciNet  MATH  Google Scholar 

  24. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252

    Article  MathSciNet  MATH  Google Scholar 

  25. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  26. Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  27. Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells through capillaries. Phys Fluids 17(3):031503

    Article  MathSciNet  Google Scholar 

  28. Stockie JM, Wetton BR (1999) Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J Comput Phys 154(1):41–64

    Article  MATH  Google Scholar 

  29. Tartar L (2007) An introduction to Sobolev spaces and interpolation spaces. Springer, Berlin

    MATH  Google Scholar 

  30. Thurston GB (1972) Viscoelasticity of human blood. Biophys J 12(9):1205–1217

    Article  Google Scholar 

  31. Thurston GB (1996) Viscoelastic properties of blood and blood analogs. In: How TV (ed) Advances in hemodynamics and hemorheology. JAI Press, London, pp 1–30

    Chapter  Google Scholar 

  32. Tu C, Peskin CS (1992) Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J Sci Stat Comput 13(6):1361–1376

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang T, Pan T-W, Xing ZW, Glowinski R (2009) Numerical simulation of red blood cell rouleaus in microchannels. Phys Rev E 79(4):041916-1

    Google Scholar 

Download references

Acknowledgements

Both authors acknowledge support by the German National Science Foundation DFG within the DFG Priority Program SPP 1253 ‘Optimierung mit partiellen Differentialgleichungen’. The first author has been further supported by the NSF grants DMS-0707602, DMS-0914788, by the BMBF within the projects ‘FROPT’ and ‘MeFreSim’, and by the ESF within the Networking Programme ‘OPTPDE’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H. W. Hoppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoppe, R.H.W., Linsenmann, C. (2013). The Finite Element Immersed Boundary Method for the Numerical Simulation of the Motion of Red Blood Cells in Microfluidic Flows. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds) Numerical Methods for Differential Equations, Optimization, and Technological Problems. Computational Methods in Applied Sciences, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5288-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5288-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5287-0

  • Online ISBN: 978-94-007-5288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics