Skip to main content

Sea Level Rise

Part of the Coastal Research Library book series (COASTALRL,volume 1000)

Abstract

Sea level rise in the twentieth century was 1.7 mm/year, and there are different accounts as to whether the rise included a very small deceleration or acceleration. From 1993 to 2012, altimeters have measured a greater sea level trend than the twentieth century trend, but it is not known yet whether this is the leading edge of a sustained acceleration or a fluctuation similar to others that occurred in the twentieth century. The Intergovernmental Panel on Climate Change (IPCC) projected a sea level rise of 0.18 to 0.59 m from 1990 to 2100, but did not include scaled-up ice discharges from ice sheets of Greenland and Antarctica in determining its 0.59 m upper limit. There have been a number of projections of sea level rise to 2100 of 1 to 2 m. These are typically maximum possible projections that do not have probabilities associated with them and, thus, are not directly comparable to the 95%-confidence level projection of the IPCC. Assuming highly improbable/impossible events such as the immediate collapse of the West Antarctic ice sheet with the simultaneous quadrupling of carbon dioxide levels in the atmosphere, sea level could rise as much as 1.7 m by 2100. However, this maximum possible sea level rise by 2100 is not useful in planning and design of flood projects, since it is not typically used even for siting nuclear power plants. Instead, planning and design of flood projects require statistics of sea level projections that are at commensurate probability levels with design-floods. Although IPCC did not fully consider the contributions from Greenland and Antarctica, a recent study that did uses IPCC methodology and projects 5, 50, and 95%-confidence-level rises by 2100. Assuming a standard normal distribution, these projections can be used to determine sea level rise probabilities that are consistent with design-flood probabilities. Sea level rise by 2100 will have significant effects on permanent coastal inundation, flooding from episodic events, shoreline erosion and salinity intrusion. The most appropriate response to sea level rise is limiting the long-term rise to a manageable level and adaptation to the inevitable rise which will occur. The world must work to reach new agreements limiting carbon emissions and thus limit the long-term rise. But since sea level rise has considerable inertia and will produce an inevitable rise, steps must be taken to adapt to the rise.

Keywords

  • Tide Gauge
  • Saltwater Intrusion
  • Glacial Isostatic Adjustment
  • Salt Water Intrusion
  • Tide Gauge Record

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-5234-4_10
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-5234-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2

References

  • Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201

    CrossRef  Google Scholar 

  • Absalonsen L, Dean RG (2011) Characteristics of the shoreline change along Florida sandy beaches with an example for the Palm Beach County. J Coast Res 27(96A):16–26

    CrossRef  Google Scholar 

  • Arctic Monitoring and Assessment Programme (2011) Snow, water, ice, and permafrost in the Arctic. http://amap.no/swipa/CombinedDraft.pdf

  • Bamber JL, Riva REM, Vermeersen BLA, LeBrooq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice. Science 324:901–903. doi:10.1126/science.1169335

    CrossRef  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Que’re’ C, Levitus S, Noijiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 385–432

    Google Scholar 

  • Bingham RG, Nienow PW, Sharp MJ (2003) Intra-annual and intra-seasonal flow dynamics of a high Arctic polythermal valley glacier. Ann Glaciol 37:181–188

    CrossRef  Google Scholar 

  • Bruun P (1962) Sea level rise as a cause if shore erosion. J Waterw Harb Div, Am Soc Civ Eng 1:116–130

    Google Scholar 

  • Church JA, White NJ (2006) 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi:10.1029/2005GL024826

    CrossRef  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th century to the early 21st century. Surv Geophys. doi:10.1007/s10712-011-9119-1

  • Cooper JAG, Pilkey OH (2004) Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob Planet Change 43(3–4):157–171

    CrossRef  Google Scholar 

  • Dean RG (1991) Equilibrium beach profiles: characteristics and applications. J Coast Res 7(1):53–84

    Google Scholar 

  • Dean RG, Houston JR (2012) Recent sea level trends and accelerations via an extensive global tide gauge data set. National conference on beach preservation technology, Florida Shore and Beach Association, February 8–10, Hutchinson Island, FL. Available online at: http://www.fsbpa.com/2012TechPresentations/DeanandHouston.pdf

  • Domingues CM, Church JA, White NJ, Gleckler PJ, Wiffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094. doi:10, 1038/nature07080

    CrossRef  Google Scholar 

  • Douglas BC (1992) Global sea level acceleration. J Geophys Res 97(C8):12699–12706

    CrossRef  Google Scholar 

  • Douglas BC (2001) Sea level change in the era of the recording tide gauge. In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences, vol 3. Academic, San Diego, pp 65–93

    Google Scholar 

  • Dubois RN (1976) Nearshore evidence in support of the Bruun Rule on shore erosion. J Geol 84(4):485–491

    CrossRef  Google Scholar 

  • Federal Emergency Management Agency (1991) Projected impact of relative sea level rise on the National Flood Insurance Program. Available online at: http://epa.gov/climatechange/effects/downloads/flood_insurance.pdf

  • Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr, Palaeoclimatol, Palaeoecol 89:379–398

    CrossRef  Google Scholar 

  • Gornitz V (2007) Sea level rise, after the ice melted and today. Available online at: http://www.giss.nasa.gov/research/briefs/gornitz_09/

  • Graversen RG, Drijghout S, Hazeleger W, van de Wal R, Bintanja R, Helsen M (2010) Greenland’s contribution to global sea-level rise by the end of the 21st century. Clim Dyn. doi:10.1007/s00382-010-0918-8

  • Greve R, Saito F, Abe-ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann Glaciol 52(58):23–30

    CrossRef  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472. doi:10.1007/s00382-008-0507-2

    CrossRef  Google Scholar 

  • Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:024002. doi:10.1088/1748-9326/2/2/024002

    CrossRef  Google Scholar 

  • Hansen JE, Sato M (2011) Paleoclimate implications for human-made climate change. Published electronically at arXiv:1105.0968v2 [physics.ao-ph]. http://arxiv.org/ftp/arxiv/papers/1105/1105.0968.pdf

  • Hinkel J, Klein RJT (2009) Integrating knowledge to assess coastal vulnerability to sea-level rise: the development of the DIVA tool. Glob Environ Change 19:384–395. doi:10.1016/j.gloevcha.2009.03.002

    CrossRef  Google Scholar 

  • Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34:L01602. doi:1029/2006GL028492

    CrossRef  Google Scholar 

  • Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305. doi:10.1029/2004GL019626

    CrossRef  Google Scholar 

  • Holgate S, Jevrejeva S, Woodworth P, Brewer S (2007) Comment on A semi-empirical approach to projecting future sea level rise. Science 317:1866. www.sciencemag.org/cgi/content/full/317/5846/1866b

    Google Scholar 

  • Houston JR (2012) Sea level projections to 2100 using methodology of the Intergovernmental Panel on Climate Change. J Waterw, Port, Coast, Ocean Eng, Am Soc Civ Eng (in publication)

    Google Scholar 

  • Houston JR, Dean RG (2011a) Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J Coast Res 27(3):409–417

    CrossRef  Google Scholar 

  • Houston JR, Dean RG (2011b) Discussion of ‘Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses’ by J.R. Houston and R.G. Dean. J Coast Res 27(3):409–417: Response to Discussion by S. Rahmstorf and M. Vermeer (2011)

    Google Scholar 

  • Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys Res Lett 36:L10707. doi:1029/2009GL037998

    CrossRef  Google Scholar 

  • Huybrechts P, Goelzer H, Janssens I, Driesschaert E, Fichefet T, Goosse H, Loutre M-F (2011) Response of the Greenland and Antarctic ice sheets to multi-millennial greenhouse warming in the earth system model of intermediate complexity LOVECLIM. Surv Geophys 32:397–416. doi:10.1007/s10712-011-9131-5

    CrossRef  Google Scholar 

  • IPCC (International Panel on Climate Change) (2010) Workshop report of the Intergovernmental Panel on Climate Change workshop on sea level rise and ice sheet instabilities. In: Stocker TF et al (eds) IPCC working group I technical support unit, University of Bern, Bern, Switzerland. Available online at: https://www.ipcc-wg1.unibe.ch/publications/supportingmaterial/supportingmaterial.html

  • Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S et al (eds) Climate change 2007: the physical science basis, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 434–485

    Google Scholar 

  • Jardine P (2011) The Paleocene-Eocene thermal maximum. Palaeontology. Available online at: http://www.palaeontologyonline.com/articles/2011/the-paleocene-eocene-thermal-maximum/

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229

    CrossRef  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703. doi:10.1029/ 2010GL042947

    CrossRef  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A (2011) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Change. doi:10.1016/j.gloplacha.2011.09.006

  • Kashef A-A I (1983) Salt-water intrusion in the Nile Delta. Groundwater 21(2):160–167. Available online at: http://info.ngwa.org/gwol/pdf/831023085.PDF

    Google Scholar 

  • Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change. doi:10.1007/s10584-008-9442-9

  • Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag H-P, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal Weisse R (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta – the Netherlands as an example. Climatic Change. doi:10.1007/s10584-011-0037-5. Available online at: http://www.princeton.edu/step/people/faculty/michael-oppenheimer/research/Katsman-et-al-CC-2011.online.pdf

  • Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462:863–868. doi:10.1038/nature08686

    CrossRef  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA71

    Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide; assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37. doi:10.1177/0956247807076960

    CrossRef  Google Scholar 

  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Co-authors (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  • Milliman JD, Broadus JM, Gable F (1989) Environmental an economic impact of ring sea level and subsiding deltas: the Nile and Bengal. Ambio 18:340–345

    Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    CrossRef  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Ivins ER, Vermeersen LLL, Milne GA, Lambeck K (2010) Surface mass loading on a dynamic earth; complexity and contamination in the geodetic analysis of global sea-level trends. In: Church JA et al (eds) Understanding sea-level rise and variability, vol 10. Wiley-Blackwell, Chichester, pp 285–313

    CrossRef  Google Scholar 

  • National Snow and Ice Data Center (2009) World glacier inventory. World Glacier Monitoring Service and National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. http://nsidc.org/data/docs/noaa/g01130_glacier_inventory/

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(1):435–446

    CrossRef  Google Scholar 

  • Nicholls RJ, Tol SJ (2006) Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philos Trans R Soc 364:1073–1095. doi:10, 1098/rsta.2006.1754

    CrossRef  Google Scholar 

  • Nicholls RJ, Hanson S, Herwijer C, Patmore N, Hallegatte S, Corfee-Moriot J, ChateauJ, Muir-Wood R (2007a) Ranking of the world’s cities most exposed to coastal flooding today and in the future. In a report for: Organization for Economic Co-operation and Development, Available online at: http://www.rms.com/publications/OECD_Cities_Coastal_Flooding.pdf

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007b) Coastal systems and low-lying areas. In: Parry ML et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmao D, Hinkel J, Tol RSJ (2011) Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos Trans R Soc 369(1934):161–181. doi:10.1098/rsta.2010.0291

    CrossRef  Google Scholar 

  • Peltier WR (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In: Douglas BS, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences, vol 4. Academic, San Diego, pp 65–93

    CrossRef  Google Scholar 

  • Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343

    CrossRef  Google Scholar 

  • Pilkey OH, Morton RW, Luternauer J (2006) The carbonate fraction of beach and dune sands. Sedimentology 8(4). Available online at: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3091.1967.tb01330.x/pdf

  • Poehls DJ, Smith GJ (2009) Encyclopedic dictionary of hydrogeology, vol 141. Elsevier, Amsterdam, 516 p

    Google Scholar 

  • Prandi P, Cazenave A, Becker M (2009) Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and satellite altimetry over 1993–2007. Geophys Res Lett 36:L05602. doi:10.1029/2008GL036564

    CrossRef  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    CrossRef  Google Scholar 

  • Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91:496–515

    CrossRef  Google Scholar 

  • Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427

    CrossRef  Google Scholar 

  • Rohling E, Grant K, Hemleben C, Siddall M, Hoogakker B, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nat Geosci 1:38–42. doi:10.1038/ngeo.2007.28

    CrossRef  Google Scholar 

  • Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg LSLO, Wendelberger KS (2011) Sea level rise and South Florida coastal forests. Clim Change 107:81–108, doi:10.1017/s10584-011-0082-0

    Google Scholar 

  • Schmith T, Johansen S, Thejll P (2007) Comment on ‘A semi-empirical approach to projecting future sea-level rise’. Science 317:1866c. doi:10.1126/science.1143286

    CrossRef  Google Scholar 

  • Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469:521–524. doi:10.1038/nature09740

    CrossRef  Google Scholar 

  • Taboada FG, Anadon R (2010) Critique of the methods used to project global sea-level rise from global temperature. Proc Natl Acad Sci 107(29):E116–E117. doi:10.1073/pnas.0914942107

    CrossRef  Google Scholar 

  • Truffer M, Harrison WD, March RS (2005) Record negative glacier balances and low velocities during the 2004 heat wave in Alaska, USA: implications for the interpretation of observations by Zwally and others in Greenland. J Glaciol 51:663–664

    CrossRef  Google Scholar 

  • University of Colorado (2012) Sea level change. Available online at: http://sealevel.colorado.edu/current/sl_ib_ns_global.pdf. Accessed 7 Mar 2012

  • van de Berg WJ, van den Broeke M, Ettema J, Meijgaard E, Kaspar F (2011) Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat Geosci 4:679–683. doi:10.1038/NGEO1245

    CrossRef  Google Scholar 

  • van de Wal RSW, Boot W, van den Broeke MR, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemanset J (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science 321:111–113

    CrossRef  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532. doi:_10.1073_pnas.0907765106

    CrossRef  Google Scholar 

  • Watson PJ (2011) Is there evidence yet of acceleration in mean sea level rise around mainland Australia. J Coast Res 27(2):368–377. doi:10.2112/JCOASTRES-D-10-00141.1

    CrossRef  Google Scholar 

  • Watson C, White NJ, Coleman R, Church JA (2004) TOPEX/Poseidon and Jason-1: absolute calibration in Bass Strait, Australia. Mar Geod 27:107–131

    CrossRef  Google Scholar 

  • Wiedenman R (2010) Adaptive response planning for sea-level rise and saltwater intrusion in Miami-Dade County. Ph.D. Dissertation, Florida State University. Available online at: http://www.coss.fsu.edu/durp/sites/coss.fsu.edu.durp/files/DIR_Weidenman_woAppendix.pdf

  • Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coast Res 19:287–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Houston, J. (2013). Sea Level Rise. In: Finkl, C. (eds) Coastal Hazards. Coastal Research Library, vol 1000. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5234-4_10

Download citation