Sea Level Rise

  • James Houston
Part of the Coastal Research Library book series (COASTALRL, volume 1000)


Sea level rise in the twentieth century was 1.7 mm/year, and there are different accounts as to whether the rise included a very small deceleration or acceleration. From 1993 to 2012, altimeters have measured a greater sea level trend than the twentieth century trend, but it is not known yet whether this is the leading edge of a sustained acceleration or a fluctuation similar to others that occurred in the twentieth century. The Intergovernmental Panel on Climate Change (IPCC) projected a sea level rise of 0.18 to 0.59 m from 1990 to 2100, but did not include scaled-up ice discharges from ice sheets of Greenland and Antarctica in determining its 0.59 m upper limit. There have been a number of projections of sea level rise to 2100 of 1 to 2 m. These are typically maximum possible projections that do not have probabilities associated with them and, thus, are not directly comparable to the 95%-confidence level projection of the IPCC. Assuming highly improbable/impossible events such as the immediate collapse of the West Antarctic ice sheet with the simultaneous quadrupling of carbon dioxide levels in the atmosphere, sea level could rise as much as 1.7 m by 2100. However, this maximum possible sea level rise by 2100 is not useful in planning and design of flood projects, since it is not typically used even for siting nuclear power plants. Instead, planning and design of flood projects require statistics of sea level projections that are at commensurate probability levels with design-floods. Although IPCC did not fully consider the contributions from Greenland and Antarctica, a recent study that did uses IPCC methodology and projects 5, 50, and 95%-confidence-level rises by 2100. Assuming a standard normal distribution, these projections can be used to determine sea level rise probabilities that are consistent with design-flood probabilities. Sea level rise by 2100 will have significant effects on permanent coastal inundation, flooding from episodic events, shoreline erosion and salinity intrusion. The most appropriate response to sea level rise is limiting the long-term rise to a manageable level and adaptation to the inevitable rise which will occur. The world must work to reach new agreements limiting carbon emissions and thus limit the long-term rise. But since sea level rise has considerable inertia and will produce an inevitable rise, steps must be taken to adapt to the rise.


Tide Gauge Saltwater Intrusion Glacial Isostatic Adjustment Salt Water Intrusion Tide Gauge Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of the error budget of global sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci 5:193–201CrossRefGoogle Scholar
  2. Absalonsen L, Dean RG (2011) Characteristics of the shoreline change along Florida sandy beaches with an example for the Palm Beach County. J Coast Res 27(96A):16–26CrossRefGoogle Scholar
  3. Arctic Monitoring and Assessment Programme (2011) Snow, water, ice, and permafrost in the Arctic.
  4. Bamber JL, Riva REM, Vermeersen BLA, LeBrooq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice. Science 324:901–903. doi: 10.1126/science.1169335 CrossRefGoogle Scholar
  5. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Que’re’ C, Levitus S, Noijiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 385–432Google Scholar
  6. Bingham RG, Nienow PW, Sharp MJ (2003) Intra-annual and intra-seasonal flow dynamics of a high Arctic polythermal valley glacier. Ann Glaciol 37:181–188CrossRefGoogle Scholar
  7. Bruun P (1962) Sea level rise as a cause if shore erosion. J Waterw Harb Div, Am Soc Civ Eng 1:116–130Google Scholar
  8. Church JA, White NJ (2006) 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  9. Church JA, White NJ (2011) Sea-level rise from the late 19th century to the early 21st century. Surv Geophys. doi: 10.1007/s10712-011-9119-1
  10. Cooper JAG, Pilkey OH (2004) Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob Planet Change 43(3–4):157–171CrossRefGoogle Scholar
  11. Dean RG (1991) Equilibrium beach profiles: characteristics and applications. J Coast Res 7(1):53–84Google Scholar
  12. Dean RG, Houston JR (2012) Recent sea level trends and accelerations via an extensive global tide gauge data set. National conference on beach preservation technology, Florida Shore and Beach Association, February 8–10, Hutchinson Island, FL. Available online at:
  13. Domingues CM, Church JA, White NJ, Gleckler PJ, Wiffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094. doi: 10, 1038/nature07080 CrossRefGoogle Scholar
  14. Douglas BC (1992) Global sea level acceleration. J Geophys Res 97(C8):12699–12706CrossRefGoogle Scholar
  15. Douglas BC (2001) Sea level change in the era of the recording tide gauge. In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences, vol 3. Academic, San Diego, pp 65–93Google Scholar
  16. Dubois RN (1976) Nearshore evidence in support of the Bruun Rule on shore erosion. J Geol 84(4):485–491CrossRefGoogle Scholar
  17. Federal Emergency Management Agency (1991) Projected impact of relative sea level rise on the National Flood Insurance Program. Available online at:
  18. Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr, Palaeoclimatol, Palaeoecol 89:379–398CrossRefGoogle Scholar
  19. Gornitz V (2007) Sea level rise, after the ice melted and today. Available online at:
  20. Graversen RG, Drijghout S, Hazeleger W, van de Wal R, Bintanja R, Helsen M (2010) Greenland’s contribution to global sea-level rise by the end of the 21st century. Clim Dyn. doi: 10.1007/s00382-010-0918-8
  21. Greve R, Saito F, Abe-ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann Glaciol 52(58):23–30CrossRefGoogle Scholar
  22. Grinsted A, Moore JC, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472. doi: 10.1007/s00382-008-0507-2 CrossRefGoogle Scholar
  23. Hansen JE (2007) Scientific reticence and sea level rise. Environ Res Lett 2:024002. doi: 10.1088/1748-9326/2/2/024002 CrossRefGoogle Scholar
  24. Hansen JE, Sato M (2011) Paleoclimate implications for human-made climate change. Published electronically at arXiv:1105.0968v2 [].
  25. Hinkel J, Klein RJT (2009) Integrating knowledge to assess coastal vulnerability to sea-level rise: the development of the DIVA tool. Glob Environ Change 19:384–395. doi: 10.1016/j.gloevcha.2009.03.002 CrossRefGoogle Scholar
  26. Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34:L01602. doi: 1029/2006GL028492 CrossRefGoogle Scholar
  27. Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305. doi: 10.1029/2004GL019626 CrossRefGoogle Scholar
  28. Holgate S, Jevrejeva S, Woodworth P, Brewer S (2007) Comment on A semi-empirical approach to projecting future sea level rise. Science 317:1866. Google Scholar
  29. Houston JR (2012) Sea level projections to 2100 using methodology of the Intergovernmental Panel on Climate Change. J Waterw, Port, Coast, Ocean Eng, Am Soc Civ Eng (in publication)Google Scholar
  30. Houston JR, Dean RG (2011a) Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. J Coast Res 27(3):409–417CrossRefGoogle Scholar
  31. Houston JR, Dean RG (2011b) Discussion of ‘Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses’ by J.R. Houston and R.G. Dean. J Coast Res 27(3):409–417: Response to Discussion by S. Rahmstorf and M. Vermeer (2011)Google Scholar
  32. Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys Res Lett 36:L10707. doi: 1029/2009GL037998 CrossRefGoogle Scholar
  33. Huybrechts P, Goelzer H, Janssens I, Driesschaert E, Fichefet T, Goosse H, Loutre M-F (2011) Response of the Greenland and Antarctic ice sheets to multi-millennial greenhouse warming in the earth system model of intermediate complexity LOVECLIM. Surv Geophys 32:397–416. doi: 10.1007/s10712-011-9131-5 CrossRefGoogle Scholar
  34. IPCC (International Panel on Climate Change) (2010) Workshop report of the Intergovernmental Panel on Climate Change workshop on sea level rise and ice sheet instabilities. In: Stocker TF et al (eds) IPCC working group I technical support unit, University of Bern, Bern, Switzerland. Available online at:
  35. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S et al (eds) Climate change 2007: the physical science basis, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 434–485Google Scholar
  36. Jardine P (2011) The Paleocene-Eocene thermal maximum. Palaeontology. Available online at:
  37. Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi: 10.1029/2005JC003229 CrossRefGoogle Scholar
  38. Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703. doi: 10.1029/ 2010GL042947 CrossRefGoogle Scholar
  39. Jevrejeva S, Moore JC, Grinsted A (2011) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Change. doi: 10.1016/j.gloplacha.2011.09.006
  40. Kashef A-A I (1983) Salt-water intrusion in the Nile Delta. Groundwater 21(2):160–167. Available online at: Google Scholar
  41. Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burgers G (2008) Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Clim Change. doi: 10.1007/s10584-008-9442-9
  42. Katsman CA, Sterl A, Beersma JJ, van den Brink HW, Church JA, Hazeleger W, Kopp RE, Kroon D, Kwadijk J, Lammersen R, Lowe J, Oppenheimer M, Plag H-P, Ridley J, von Storch H, Vaughan DG, Vellinga P, Vermeersen LLA, van de Wal Weisse R (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta – the Netherlands as an example. Climatic Change. doi: 10.1007/s10584-011-0037-5. Available online at:
  43. Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462:863–868. doi: 10.1038/nature08686 CrossRefGoogle Scholar
  44. Lisiecki LE, Raymo ME (2005) Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20:PA1003. doi: 10.1029/2004PA71 Google Scholar
  45. McGranahan G, Balk D, Anderson B (2007) The rising tide; assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37. doi: 10.1177/0956247807076960 CrossRefGoogle Scholar
  46. Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Co-authors (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–846Google Scholar
  47. Milliman JD, Broadus JM, Gable F (1989) Environmental an economic impact of ring sea level and subsiding deltas: the Nile and Bengal. Ambio 18:340–345Google Scholar
  48. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  49. Mitrovica JX, Tamisiea ME, Ivins ER, Vermeersen LLL, Milne GA, Lambeck K (2010) Surface mass loading on a dynamic earth; complexity and contamination in the geodetic analysis of global sea-level trends. In: Church JA et al (eds) Understanding sea-level rise and variability, vol 10. Wiley-Blackwell, Chichester, pp 285–313CrossRefGoogle Scholar
  50. National Snow and Ice Data Center (2009) World glacier inventory. World Glacier Monitoring Service and National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO.
  51. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(1):435–446CrossRefGoogle Scholar
  52. Nicholls RJ, Tol SJ (2006) Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philos Trans R Soc 364:1073–1095. doi: 10, 1098/rsta.2006.1754 CrossRefGoogle Scholar
  53. Nicholls RJ, Hanson S, Herwijer C, Patmore N, Hallegatte S, Corfee-Moriot J, ChateauJ, Muir-Wood R (2007a) Ranking of the world’s cities most exposed to coastal flooding today and in the future. In a report for: Organization for Economic Co-operation and Development, Available online at:
  54. Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007b) Coastal systems and low-lying areas. In: Parry ML et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356Google Scholar
  55. Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmao D, Hinkel J, Tol RSJ (2011) Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos Trans R Soc 369(1934):161–181. doi: 10.1098/rsta.2010.0291 CrossRefGoogle Scholar
  56. Peltier WR (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In: Douglas BS, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences, vol 4. Academic, San Diego, pp 65–93CrossRefGoogle Scholar
  57. Pfeffer WT, Harper JT, O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321(5894):1340–1343CrossRefGoogle Scholar
  58. Pilkey OH, Morton RW, Luternauer J (2006) The carbonate fraction of beach and dune sands. Sedimentology 8(4). Available online at:
  59. Poehls DJ, Smith GJ (2009) Encyclopedic dictionary of hydrogeology, vol 141. Elsevier, Amsterdam, 516 pGoogle Scholar
  60. Prandi P, Cazenave A, Becker M (2009) Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and satellite altimetry over 1993–2007. Geophys Res Lett 36:L05602. doi: 10.1029/2008GL036564 CrossRefGoogle Scholar
  61. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  62. Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91:496–515CrossRefGoogle Scholar
  63. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427CrossRefGoogle Scholar
  64. Rohling E, Grant K, Hemleben C, Siddall M, Hoogakker B, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nat Geosci 1:38–42. doi: 10.1038/ngeo.2007.28 CrossRefGoogle Scholar
  65. Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg LSLO, Wendelberger KS (2011) Sea level rise and South Florida coastal forests. Clim Change 107:81–108, doi: 10.1017/s10584-011-0082-0 Google Scholar
  66. Schmith T, Johansen S, Thejll P (2007) Comment on ‘A semi-empirical approach to projecting future sea-level rise’. Science 317:1866c. doi: 10.1126/science.1143286 CrossRefGoogle Scholar
  67. Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469:521–524. doi: 10.1038/nature09740 CrossRefGoogle Scholar
  68. Taboada FG, Anadon R (2010) Critique of the methods used to project global sea-level rise from global temperature. Proc Natl Acad Sci 107(29):E116–E117. doi: 10.1073/pnas.0914942107 CrossRefGoogle Scholar
  69. Truffer M, Harrison WD, March RS (2005) Record negative glacier balances and low velocities during the 2004 heat wave in Alaska, USA: implications for the interpretation of observations by Zwally and others in Greenland. J Glaciol 51:663–664CrossRefGoogle Scholar
  70. University of Colorado (2012) Sea level change. Available online at: Accessed 7 Mar 2012
  71. van de Berg WJ, van den Broeke M, Ettema J, Meijgaard E, Kaspar F (2011) Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat Geosci 4:679–683. doi: 10.1038/NGEO1245 CrossRefGoogle Scholar
  72. van de Wal RSW, Boot W, van den Broeke MR, Smeets CJPP, Reijmer CH, Donker JJA, Oerlemanset J (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science 321:111–113CrossRefGoogle Scholar
  73. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106(51):21527–21532. doi: _10.1073_pnas.0907765106 CrossRefGoogle Scholar
  74. Watson PJ (2011) Is there evidence yet of acceleration in mean sea level rise around mainland Australia. J Coast Res 27(2):368–377. doi: 10.2112/JCOASTRES-D-10-00141.1 CrossRefGoogle Scholar
  75. Watson C, White NJ, Coleman R, Church JA (2004) TOPEX/Poseidon and Jason-1: absolute calibration in Bass Strait, Australia. Mar Geod 27:107–131CrossRefGoogle Scholar
  76. Wiedenman R (2010) Adaptive response planning for sea-level rise and saltwater intrusion in Miami-Dade County. Ph.D. Dissertation, Florida State University. Available online at:
  77. Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coast Res 19:287–295Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.EmeritusUS Army Engineer Research CenterVicksburgUSA

Personalised recommendations