Skip to main content

Orphan Diseases, Bioinformatics and Drug Discovery

  • Chapter
  • First Online:
Pediatric Biomedical Informatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 2))

Abstract

In general, a rare or orphan disease is any disease that affects a small percentage of the population. Since a majority of the known orphan diseases are genetic, they are present throughout the life of affected individuals. Many of the orphan diseases appear early in life and approximately 30% of children with orphan diseases die before the age of 5. The bulk of genes and pathways underlying these diseases remain unknown and pose a major gap in orphan disease research. In spite of technological advances and opportunities available to understand the causes of orphan diseases and for developing innovative medical approaches, most of the current efforts are focused either on a single or related group of orphan diseases. Relatively few studies have attempted global analysis of all orphan diseases. Constructing networks that underlie biological processes and pathways associated with orphan diseases and orphan drugs facilitate identification of the functional units that respond to genetic perturbations and potentially affect disease risk or therapeutics. Analysis of these biological networks can also identify common pathways or processes for multiple orphan diseases that are biologically related. Comprehensive understanding of such molecular bases may provide opportunities for novel interventions that are beneficial for an array of related orphan diseases. In this chapter, we review some of the current bioinformatic analytical options available for orphan disease and drug research including computational approaches for candidate gene prioritization. We also discuss strategies and present examples and case studies of common drugs being repositioned for treatment of orphan diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adie EA, et al. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics. 2005;6:55.

    Article  PubMed  Google Scholar 

  • Adie EA, et al. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006;22(6):773–4.

    Article  PubMed  CAS  Google Scholar 

  • Aerts S, et al. Gene prioritization through genomic data fusion. Nat Biotechnol. 2006;24(5):537–44.

    Article  PubMed  CAS  Google Scholar 

  • Altman RB. PharmGKB: a logical home for knowledge relating genotype to drug response phenotype. Nat Genet. 2007;39(4):426.

    Article  PubMed  CAS  Google Scholar 

  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–83.

    Article  PubMed  CAS  Google Scholar 

  • Ayme S. [Orphanet, an information site on rare diseases]. Soins. 2003; (672):46–7.

    Google Scholar 

  • Bainbridge MN, et al. Whole-genome sequencing for optimized patient management. Sci Transl Med. 2011;3(87):87re3.

    Article  PubMed  Google Scholar 

  • Barrett T, et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res. 2007;35(Database issue):D760–5.

    Article  PubMed  CAS  Google Scholar 

  • Becker J, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;88(3):362–71.

    Google Scholar 

  • Benitez BA, et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One. 2011;6(11):e26741.

    Article  PubMed  CAS  Google Scholar 

  • Bilguvar K, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467(7312):207–10.

    Article  PubMed  CAS  Google Scholar 

  • Boguski MS, Mandl KD, Sukhatme VP. Drug discovery. Repurposing with a difference. Science. 2009;324(5933):1394–5.

    Article  PubMed  CAS  Google Scholar 

  • Bolze A, et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet. 2010;87(6):873–81.

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.

    Article  PubMed  CAS  Google Scholar 

  • Brenk R, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008;3(3):435–44.

    Article  PubMed  CAS  Google Scholar 

  • Byun M, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207(11):2307–12.

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Shen C, Sivachenko AY. Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput; 2006:367–78.

    Google Scholar 

  • Chen J, et al. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics. 2007;8:392.

    Article  PubMed  Google Scholar 

  • Chen J, et al. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009a;37(Web Server issue):W305–11.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics. 2009b;10:73.

    Article  PubMed  Google Scholar 

  • Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin PharmaTher. 2009;86(5):507–10.

    CAS  Google Scholar 

  • Choi M, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

    Article  PubMed  CAS  Google Scholar 

  • Erlich Y, et al. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21(5):658–64.

    Article  PubMed  CAS  Google Scholar 

  • Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci U S A. 2008;105(11):4323–8.

    Article  PubMed  CAS  Google Scholar 

  • Field MJ, Boat TF. Rare diseases and orphan products: accelerating research and development. In: Field MJ, Boat TF, Institute of Medicine Committee on Accelerating Rare Diseases Research and Orphan Product Development, editors. Rare diseases and orphan products: accelerating research and development. Washington, DC: National Academies Press; 2010.

    Google Scholar 

  • Franke L, et al. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78(6):1011–25.

    Article  PubMed  CAS  Google Scholar 

  • Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics. 2002;18 Suppl 2:S110–15.

    Article  PubMed  Google Scholar 

  • George RA, et al. Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. 2006;34(19):e130.

    Article  PubMed  Google Scholar 

  • Gilissen C, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010;87(3):418–23.

    Article  PubMed  CAS  Google Scholar 

  • Gilissen C, et al. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012;20(5):490–7.

    Article  PubMed  CAS  Google Scholar 

  • Goel R, et al. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst. 2012;8(2):453–63.

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, et al. The human disease network. Proc Natl Acad Sci U S A. 2007;104(21):8685–90.

    Article  PubMed  CAS  Google Scholar 

  • Gotz A, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88(5):635–42.

    Article  PubMed  CAS  Google Scholar 

  • Grau D, Serbedzija G. Innovative strategies for drug repurposing. Drug Discov Dev. 2007. http://www.dddmag.com/articles/2007/09/innovative-strategies-drug-repurposing

    Google Scholar 

  • Hamosh A, et al. Online Mendelian Inheritance in Man (OMIM). Hum Mutat. 2000;15(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  • Hoischen A, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42(6):483–5.

    Article  PubMed  CAS  Google Scholar 

  • Hristovski D, et al. Using literature-based discovery to identify disease candidate genes. Int J Med Inform. 2005;74(2–4):289–98.

    Article  PubMed  Google Scholar 

  • Iorio F, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010a;107(33):14621–6.

    Article  PubMed  CAS  Google Scholar 

  • Iorio F, et al. Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy. 2010b;6(8):1204–5.

    Article  PubMed  CAS  Google Scholar 

  • Isidor B, et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011;43(4):306–8.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature. 2001;409(6822):853–5.

    Article  PubMed  CAS  Google Scholar 

  • Johnson JO, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64.

    Article  PubMed  CAS  Google Scholar 

  • Junker BH, Koschutzki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinform. 2006;7:219.

    Article  Google Scholar 

  • Kaimal V, et al. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes. Methods Mol Biol. 2011;700:241–59.

    Article  PubMed  CAS  Google Scholar 

  • Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8(5):333–46.

    Article  PubMed  CAS  Google Scholar 

  • King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188(4184):107–16.

    Article  PubMed  CAS  Google Scholar 

  • Kingsmore SF, Saunders CJ. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3(87):87ps23.

    Article  PubMed  Google Scholar 

  • Kohler S, et al. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008;82(4):949–58.

    Article  PubMed  Google Scholar 

  • Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet. 2002;31(3):235–6.

    Article  PubMed  CAS  Google Scholar 

  • Krawitz PM, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010;42(10):827–9.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M, et al. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 2012;40(Database issue):D876–80.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde E, et al. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat. 2010;31(8):918–23.

    Article  PubMed  CAS  Google Scholar 

  • Lamb J, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One. 2009;4(2):e4346.

    Article  PubMed  Google Scholar 

  • Linghu B, et al. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 2009;10(9):R91.

    Article  PubMed  Google Scholar 

  • Lopez-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004;32(10):3108–14.

    Article  PubMed  CAS  Google Scholar 

  • Mackay TF. Quantitative trait loci in Drosophila. Nat Rev Genet. 2001;2(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, et al. Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011;32(10):1114–17.

    Article  PubMed  CAS  Google Scholar 

  • Masseroli M, Martucci D, Pinciroli F. GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res. 2004;32(Web Server issue):W293–300.

    Article  PubMed  CAS  Google Scholar 

  • Masseroli M, Galati O, Pinciroli F. GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res. 2005;33(Web Server issue):W717–23.

    Article  PubMed  CAS  Google Scholar 

  • Musunuru K, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363(23):2220–7.

    Article  PubMed  CAS  Google Scholar 

  • Ng SB, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010a;42(9):790–3.

    Article  PubMed  CAS  Google Scholar 

  • Ng SB, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010b;42(1):30–5.

    Google Scholar 

  • O’Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4(12):1005–14.

    Article  PubMed  Google Scholar 

  • O’Sullivan J, et al. Whole-exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet. 2011;88(5):616–20.

    Article  PubMed  Google Scholar 

  • Ortutay C, Vihinen M. Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 2009;37(2):622–8.

    Article  PubMed  CAS  Google Scholar 

  • Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57(2):153–60.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Iratxeta C, Bork P, Andrade MA. Association of genes to genetically inherited diseases using data mining. Nat Genet. 2002;31(3):316–19.

    PubMed  CAS  Google Scholar 

  • Perez-Iratxeta C, et al. G2D: a tool for mining genes associated with disease. BMC Genet. 2005;6:45.

    Article  PubMed  Google Scholar 

  • Pierce SB, et al. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome. Am J Hum Genet. 2010;87(2):282–8.

    Article  PubMed  CAS  Google Scholar 

  • Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J. 2012;279(5):678–96.

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet. 2011;88(5):650–6.

    Article  PubMed  CAS  Google Scholar 

  • Pujol A, et al. Unveiling the role of network and systems biology in drug discovery. Trends PharmaSci. 2010;31(3):115–23.

    Article  CAS  Google Scholar 

  • Rados C. Orphan products: hope for people with rare diseases. FDA Consum. 2003;37(6):10–5.

    PubMed  Google Scholar 

  • Rossi S, et al. TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res. 2006;34(Web Server issue):W285–92.

    Article  PubMed  CAS  Google Scholar 

  • Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today. 2005;10(23–24):1607–10.

    Article  PubMed  Google Scholar 

  • Sardana D, et al. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12(4):346–56.

    Article  PubMed  CAS  Google Scholar 

  • Simpson MA, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43(4):303–5.

    Article  PubMed  CAS  Google Scholar 

  • Smith NG, Eyre-Walker A. Human disease genes: patterns and predictions. Gene. 2003;318:169–75.

    Article  PubMed  CAS  Google Scholar 

  • Suthram S, et al. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol. 2010;6(2):e162.

    Article  Google Scholar 

  • The Orphan Drug Act – implementation and impact. 2001, Department of Health and Human Services, Office of Inspector Journal.

    Google Scholar 

  • Thornblad TA, et al. Prioritization of positional candidate genes using multiple web-based software tools. Twin Res Hum Genet. 2007;10(6):861–70.

    Article  PubMed  Google Scholar 

  • Tiffin N, et al. Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res. 2005;33(5):1544–52.

    Article  PubMed  CAS  Google Scholar 

  • Tiffin N, et al. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 2006;34(10):3067–81.

    Article  PubMed  CAS  Google Scholar 

  • Tranchevent LC, et al. ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res. 2008;36(Web Server issue):W377–84.

    Article  PubMed  CAS  Google Scholar 

  • Turner FS, Clutterbuck DR, Semple CA. POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. 2003;4(11):R75.

    Article  PubMed  Google Scholar 

  • US Food and Drug Administration. Orphan Drug Act, Pub L. No. 97-144, 96 Stat. 2049. 1982.

    Google Scholar 

  • van Driel MA, et al. A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet. 2003;11(1):57–63.

    Article  PubMed  Google Scholar 

  • van Driel MA, et al. GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. 2005;33(Web Server issue):W758–61.

    Article  PubMed  Google Scholar 

  • van Driel MA, et al. A text-mining analysis of the human phenome. Eur J Hum Genet. 2006;14(5):535–42.

    Article  PubMed  Google Scholar 

  • Vissers LE, et al. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet. 2011;88(5):608–15.

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010;133(Pt 12):3510–18.

    Article  PubMed  Google Scholar 

  • Wastfelt M, Fadeel B, Henter JI. A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med. 2006;260(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  • Wishart DS, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.

    Article  PubMed  CAS  Google Scholar 

  • Wu X, et al. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.

    Article  PubMed  Google Scholar 

  • Xu K, Cote TR. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform. 2011;12(4):341–5.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics. 2006;22(22):2800–5.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, et al. The orphan disease networks. Am J Hum Genet. 2011;88(6):755–66.

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007;3(7):420–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhu F, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1128–36.

    Article  PubMed  CAS  Google Scholar 

  • Zuchner S, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88(2):201–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil G. Jegga DVM, M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jegga, A.G., Zhu, C., Aronow, B.J. (2012). Orphan Diseases, Bioinformatics and Drug Discovery. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5149-1_16

Download citation

Publish with us

Policies and ethics