Biological Constraints on the Production of Microalgal-Based Biofuels

  • John G. Day
  • Michele S. Stanley
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 25)


Algal biotechnology involving the mass culturing of microalgae has the potential to produce the next generation of biofuels. Microalgae have higher growth and solar energy conversion rates than terrestrial taxa. In addition, their osmotolerance, metabolic diversity, and in some strains the capacity to produce large amounts of lipids have attracted considerable interest from both the academic and commercial science communities. It is probable that future alga mass culture facilities will be based on open pond systems, located in areas with access to saltwater/seawater and supplies of carbon dioxide. Although there are a handful of examples of currently commercially successful algal mass culturing, these have focused on the production of higher value products (pigments, health foods, etc.). The development of algal biofuels will require much further R&D. In this chapter, we have restricted our coverage to the biological constraints to a successful commercial process. These include the basic issues of algal physiology: do we understand it sufficiently and are the algae truly “up to the task”? We also discuss the molecular control of the process; can this be enhanced conventionally or through more modern molecular approaches? Lastly, we discuss interactions with other organisms; all monocultures are susceptible to “weeds,” “pests,” disease, grazing, etc. We feel that all the challenges are achievable given time, with sufficient scientific and financial investment.


Biofuel Production Lipid Production Mass Culture Acyl Carrier Protein Phaeodactylum Tricornutum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding for the BioMara project ( The Biomara project is generously supported by the European Regional Development Fund through the INTERREG IVA Programme, Highlands and Islands Enterprise, The Crown Estate, Northern Ireland Executive, Scottish Government, and Irish Government.


  1. Acien Fernandez FG, Garcıa Camacho F, Sanchez Perez JA, Fernandez Sevilla JM, Molina Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616CrossRefGoogle Scholar
  2. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Nat Acad Sci USA 106:17071–17076CrossRefGoogle Scholar
  3. Anon (2002) Virus decimates algal blooms. ScienceDaily. 18 Nov 2002Google Scholar
  4. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  5. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefGoogle Scholar
  6. Atkinson KM (1980) Experiments in dispersal of phytoplankton by ducks. Br Phycol J 15:49–58CrossRefGoogle Scholar
  7. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefGoogle Scholar
  8. Baroli I, Melis A (1996) Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta 198:640–646CrossRefGoogle Scholar
  9. Basova MM (2005) Fatty acid composition of lipids in microalgae. Int J Algae 7:33–57CrossRefGoogle Scholar
  10. Baudoux AC, Brussaard CPD (2005) Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341:80–90CrossRefGoogle Scholar
  11. Becker EW (1994) Microalgae. Biotechnology and microbiology. Cambridge University Press, CambridgeGoogle Scholar
  12. Beckmann J, Lehr F, Finazzi G, Hankamer G, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77CrossRefGoogle Scholar
  13. Beijerinck MW (1904) Das Assimilationsproduckt der Kohlensaure in den Chromatorphoren der Diatomeen. Rec Trav Bot Neerland 1:28–40Google Scholar
  14. Belarbi E-H, Molina Grima E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529CrossRefGoogle Scholar
  15. Belay A (1997) Mass culture of Spirulina outdoors: the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology and biochemistry. Taylor & Francis, London, pp 131–158Google Scholar
  16. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 273–280Google Scholar
  17. Benemann J (2003) Biofixation of CO2 and Greenhouse gas abatement with microalgae – Technology Roadmap. US Dept Energy ReportGoogle Scholar
  18. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503CrossRefGoogle Scholar
  19. Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548CrossRefGoogle Scholar
  20. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Academic, New York, pp 205–217Google Scholar
  21. Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96CrossRefGoogle Scholar
  22. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  23. Brennan L, Owende PMO (2010) Biofuels from microalgae – a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  24. Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73CrossRefGoogle Scholar
  25. Brussaard CPD (2004) Viral control of phytoplankton populations – a review. J Eukaryot Microbiol 51:125–138CrossRefGoogle Scholar
  26. Buskey EJ (2008) How does eutrophication affect the role of grazers in harmful algal bloom dynamics? Harmful Algae 8:152–157CrossRefGoogle Scholar
  27. Cai X-H, Brown C, Adhiya J, Traina SJ, Sayre RT (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein gene. Int J Phytoremediation 1:53–65CrossRefGoogle Scholar
  28. Camacho A, Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473CrossRefGoogle Scholar
  29. Campbell CN, Pröschold T, Darienko T, Bock C, Rad Menendez C (2009) Are there any true marine Chlorella species? The Phycologist 76:8Google Scholar
  30. Canter HM (1984) Observations on zoosporic fungi of Ceratium spp. in lakes of the English Lake District – importance for phytoplankton population-dynamics. New Phytol 97:601–615CrossRefGoogle Scholar
  31. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154CrossRefGoogle Scholar
  32. Carisson AS, Beilen van JB, Moller R, Clayton D (2007) Outputs from the EPOBIO project. In: D Bowles (ed) Micro-and macro-algae: utility for industrial applications. EPOBIO report CPL PressGoogle Scholar
  33. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  34. Chui S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nanochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838CrossRefGoogle Scholar
  35. Coats DW, Park MG (2002) Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): parasite survival, infectivity, generation time, and host specificity. J Phycol 38:520–528Google Scholar
  36. Cobelas MA, Lechado JZ (1989) Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites 40:118–145Google Scholar
  37. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 465:617–621CrossRefGoogle Scholar
  38. Cohen Z, Khozin-Goldberg I, Adlrestein D, Bigogno C (2000) The role of triacylglycerols as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743CrossRefGoogle Scholar
  39. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41CrossRefGoogle Scholar
  40. Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Nat Acad Sci USA 104:20770–20775CrossRefGoogle Scholar
  41. Daft MJ, Stewart WDP (1973) Light and electron-microscope observations on algal lysis by bacterium CP-1. New Phytol 72:799–808CrossRefGoogle Scholar
  42. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Nat Acad Sci USA 97:6487–6492CrossRefGoogle Scholar
  43. Davidson K, Gilpin LC, Hart M, Fouillard E, Mitchell E, Alvarez-Calleja C, Laurent C, Miller AEJ, Leakey RJ (2007) The influence of the balance of inorganic and organic nitrogen on microbial food web dynamics. Limnol Oceanogr 52:2147–2163CrossRefGoogle Scholar
  44. Day JG, Brand JJ (2005) Cryopreservation methods for maintaining cultures. In: Andersen RA (ed) Algal culturing techniques. Academic, New York, pp 165–187Google Scholar
  45. Day JG, Stacey GN (2008) Biobanking. Mol Biotechnol 40:202–213CrossRefGoogle Scholar
  46. Day JG, Pröschold T, Friedl T, Lorenz M, Silva PC (2010) Conservation of microalgal type material: approaches needed for 21st century science. Taxon 59:3–6Google Scholar
  47. Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRefGoogle Scholar
  48. Dehesh K (2001) How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur J Lipid Sci Technol 103:688–697CrossRefGoogle Scholar
  49. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Nat Acad Sci USA 103:11647–11652CrossRefGoogle Scholar
  50. Droop MR (1957) Auxotrophy and organic compounds in the nutrition of marine phyto-plankton. J Gen Microbiol 16:286–293CrossRefGoogle Scholar
  51. Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:452–460Google Scholar
  52. Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012CrossRefGoogle Scholar
  53. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 57–58:223–231Google Scholar
  54. Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–241CrossRefGoogle Scholar
  55. Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Nat Acad Sci USA 92:10237–10241CrossRefGoogle Scholar
  56. Falkowski PG, Owens TG (1980) Light-shade adaption: two strategies in marine phytoplankton. Plant Physiol 66:592–595CrossRefGoogle Scholar
  57. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, MadlenGoogle Scholar
  58. Fasham MJR, Platt T (1983) Photosynthesis response of phytoplankton to light: a physiological model. Proc Roy Soc Lond B 219:355–370CrossRefGoogle Scholar
  59. Flynn KJ, Greenwell HC, Lovitt RW, Shields R (2010) Selection for fitness at the individual or population levels: modeling effects of genetic modifications in microalgae on productivity and environmental safety. J Theor Biol 263:269–280CrossRefGoogle Scholar
  60. Galili G, Hofgen R (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Eng 4:12–21CrossRefGoogle Scholar
  61. Gleason FK, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp.. Arch Microbiol 138:273–277CrossRefGoogle Scholar
  62. Govindjee B, Zilinskas-Braun B (1974) Light absorption, emission and photosynthesis. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 346–390Google Scholar
  63. Gross EM, Wolk CP, Juttner F (1991) Fischerellin, a new allelochemical from the fresh-water cyanobacterium Fischerella-muscicola. J Phycol 27:686–692CrossRefGoogle Scholar
  64. Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198CrossRefGoogle Scholar
  65. Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144CrossRefGoogle Scholar
  66. Gumbo RJ, Ross G, Cloete ET (2008) Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773Google Scholar
  67. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefGoogle Scholar
  68. Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44:509–514CrossRefGoogle Scholar
  69. Halvarson MJ, Testrake D, Martin DF (1984) Effect of aponin, a substance from a green alga Nannochloris species on spore germination of two fungi. Microbios 41:105–113Google Scholar
  70. Harris E (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406CrossRefGoogle Scholar
  71. Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64Google Scholar
  72. Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684CrossRefGoogle Scholar
  73. Hu Q (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 264–272Google Scholar
  74. Hu Q, Zhang CW, Sommerfeld M (2006) Biodiesel from algae: lessons learned over the past 60 years and future perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, 7–12 July, pp 40–41 (Abstract)Google Scholar
  75. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  76. Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40:437–620CrossRefGoogle Scholar
  77. Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78CrossRefGoogle Scholar
  78. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterisation of the virus infecting Phaeocystis pouchetti (Prymnesiophycea). J Phycol 32:923–927CrossRefGoogle Scholar
  79. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874CrossRefGoogle Scholar
  80. James MR, Hall JA (1995) Planktonic ciliated protozoa- their distribution and relationship to environmental variables in a marine costal ecosystem. J Plankton Res 17:659–683CrossRefGoogle Scholar
  81. Kagami M, de Bruin A, Ibelings BW, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and wood-web dynamics. Hydrobiologia 578:113–129CrossRefGoogle Scholar
  82. Kamisaka Y, Noda N, Sakai T, Kawasaki K (1999) Lipid bodies and lipid body formation in an oleaginous fungus Mortierella ramanniana var. angulispora. Biochim Biophys Acta 1438:185–198CrossRefGoogle Scholar
  83. Keating KI (1977) Allelopathic influences on blue-green bloom sequence in a eutrophic lake. Science 196:885–887CrossRefGoogle Scholar
  84. Khan SA, Rashmi A, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372CrossRefGoogle Scholar
  85. Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79CrossRefGoogle Scholar
  86. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701CrossRefGoogle Scholar
  87. Kirk PW (1980) The mycostatic effect of seawater on spores of terrestrial and marine higher fungi. Bot Mar 23:233–238Google Scholar
  88. Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389Google Scholar
  89. Larsen JB, Larsen A, Thyrhaug R, Bratbak G, Sandaa R-A (2008) Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO(2) levels. Biosciences 5:523–533Google Scholar
  90. Lawrence JE (2008) Furtive foes: algal viruses as potential invaders. ICES J Mar Sci 65:716–722CrossRefGoogle Scholar
  91. Lawrence JE, Chan AM, Suttle CA (2001) A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae). J Phycol 37:216–222CrossRefGoogle Scholar
  92. Leakey RJG, Wilks SA, Murray AWA (1994) Can cytochalasin B be used as an inhibitor of feeding in grazing experiments on ciliates? Eur J Protistol 30:309–315Google Scholar
  93. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–397CrossRefGoogle Scholar
  94. Leflaive J, Buffan-Dubau E, Ten-Hage L (2008) Algal bioactive compounds reduce net oxygen fluxes of artificial diatom biofilms. Aquat Microb Ecol 51:275–284CrossRefGoogle Scholar
  95. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52CrossRefGoogle Scholar
  96. Livne A, Sukenik A (1990) Acetyl coenzyme A carboxylase from the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiol 31:851–858Google Scholar
  97. Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Academic Press, New York, pp 145–155Google Scholar
  98. Lynch DV, Thompson GA (1982) Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol 69:1369–1375CrossRefGoogle Scholar
  99. Mackinder LCM, Worthy CA, Biggi G, Hall M, Ryan KP, Varsani A, Harper GM, Wilson WH, Brownlee C, Schroeder DC (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90:2306–2316CrossRefGoogle Scholar
  100. Martinez JM, Schroeder DC, Larsen A, Bratbak G, Wilson WH (2007) Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol 73:554–562CrossRefGoogle Scholar
  101. Mason GP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine containing antibiotic from the fresh-water cyanobacterium Scytonema hofmanii. Science 213:400–402CrossRefGoogle Scholar
  102. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRefGoogle Scholar
  103. Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843CrossRefGoogle Scholar
  104. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefGoogle Scholar
  105. Mhlanga L, Day J, Chimbari M, Siziba N, Cronberg G (2006) Observations on limnological conditions associated with a fish kill of Oreochromis niloticus in Lake Chivero following collapse of an algal bloom. Afr J Ecol 44:199–208CrossRefGoogle Scholar
  106. Minowa T, Yokoyama S-Y, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738CrossRefGoogle Scholar
  107. Mitchell SA, Richmond A (1987) Use of rotifers for the maintenance of monoalgal cultures of Spirulina. Biotechnol Bioeng 30:164–168CrossRefGoogle Scholar
  108. Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712CrossRefGoogle Scholar
  109. Moreno-Garrido I, Canavate JP (2001) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac Eng 24:8–14CrossRefGoogle Scholar
  110. Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction of isolates among multiple strains of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing conspecificity with Amplified Fragment Length Polymorphism and ITS rDNA sequences. J Phycol 41:1236–1247CrossRefGoogle Scholar
  111. Müller J, Day JG, Harding K, Hepperle D, Lorenz M, Friedl T (2007) Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using Amplified Fragment Length Polymorphism (AFLP). Am J Bot 94:799–808CrossRefGoogle Scholar
  112. Muller-Feuga A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 352–364Google Scholar
  113. Murata N, Throughton JH, Fork DC (1975) Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol 56:508–517CrossRefGoogle Scholar
  114. Nagasaki K, Tomaru Y, Nakanishi K, Hata N, Katanozaka N, Yamaguchi M (2004) Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay. Aquat Microb Ecol 34:219–226CrossRefGoogle Scholar
  115. Napolitano GE (1994) The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J Phycol 30:943–950CrossRefGoogle Scholar
  116. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5: Article 28Google Scholar
  117. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970Google Scholar
  118. Orcutt DM, Patterson GW (1974) Effect of light intensity upon Nitzchia closternium (Cylindrotheca fusiformis). Lipids 9:1000–1003CrossRefGoogle Scholar
  119. Ostrofsky ML, Jacobs FG, Rowan J (1983) Evidence for the production of an extracellular herbivore deterrents by Anabaena flos-aquae. Freshwater Biol 13:501–506CrossRefGoogle Scholar
  120. Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155Google Scholar
  121. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology 10:894–898CrossRefGoogle Scholar
  122. Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264CrossRefGoogle Scholar
  123. Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113CrossRefGoogle Scholar
  124. Post AF, Dubinsky Z, Wyman K, Falkowski PG (1985) Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar Ecol Prog Ser 25:141–149CrossRefGoogle Scholar
  125. Prezelin BB (1981) Light reactions in photosynthesis. In: Platt T (ed) Physiological bases of phytoplankton ecology. Bulletin no. 210. Department of Fisheries and Oceans, Ottawa, pp 1–43Google Scholar
  126. Raison JK (1986) Alterations in the physical properties and thermal responses of membrane lipids: correlations with acclimation to chilling and high temperature. In: St John JB, Berlin E, Jackson PG (eds) Frontiers of membrane research in agriculture. Rowman & Allanheld, Totowa, pp 383–401Google Scholar
  127. Ratledge C (1988) An overview of microbial lipids. In: Ratledge C, Wilkerson SG (eds) Microbial lipids, vol 1. Academic, New York, pp 3–21Google Scholar
  128. Raven JA, Samuelson G (1986) Repair of photoinhibitory damage in Anacystis nidulans 625 (Synechococcus 5301): relating to catalytic capacity for and energy supply to protein synthesis, and implications for Pmax and the efficiency of light-limited growth. New Phytol 103:625–643CrossRefGoogle Scholar
  129. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979CrossRefGoogle Scholar
  130. Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214CrossRefGoogle Scholar
  131. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191CrossRefGoogle Scholar
  132. Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 125–177Google Scholar
  133. Rochaix JD, Goldschmidt-Clemont M, Merchant S (eds) (1998) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Academic Publishers, DordrechtGoogle Scholar
  134. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81CrossRefGoogle Scholar
  135. Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528CrossRefGoogle Scholar
  136. Roessler PG (1990a) Purification and characterization of acetyl CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78CrossRefGoogle Scholar
  137. Roessler PG (1990b) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399CrossRefGoogle Scholar
  138. Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. In: Himmel ME, Baker J, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 256–270Google Scholar
  139. Salomon PS, Graneli E, Neves MHCB, Rodriguez EG (2009) Infection by Amoebophrya spp. parasitoids of dinoflagellates in a tropical marine coastal area. Aquat Microb Ecol 55:143–153CrossRefGoogle Scholar
  140. Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176CrossRefGoogle Scholar
  141. Sato N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in term-adaptation. Biochim Biophys Acta 619:353–366CrossRefGoogle Scholar
  142. Schenk P, Thomas-Hall S, Stevens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43CrossRefGoogle Scholar
  143. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRefGoogle Scholar
  144. Sharma NK, Rai AK, Singh S, Brown RM (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627CrossRefGoogle Scholar
  145. Sharp JH, Underhill PA, Hughes DJ (1979) Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J Phycol 15:353–362Google Scholar
  146. Sheehan J, Dunahay T, Benemann J, Roessler PG (1998) US Department of Energy’s Office of Fuels Development, July 1998. A look back at the US Department of Energy’s Aquatic Species Program – Biodiesel from Algae, Close Out Report TP-580-24190. National Renewable Energy Laboratory, GoldenGoogle Scholar
  147. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:293–308CrossRefGoogle Scholar
  148. Sherr EB, Sherr BF, McDaniel J (1991) Clearance rates of  <6 μm fluorescently labelled algae (FLA) by estuarine protozoa – potential grazing impacts of flagellates and ciliates. Mar Ecol Prog Ser 69:81–92CrossRefGoogle Scholar
  149. Shi SY, Liu YD, Shen YW, Li GB, Li DH (2006) Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control 39:345–351CrossRefGoogle Scholar
  150. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light– dark cycles. J Phycol 17:374–384CrossRefGoogle Scholar
  151. Shilo M (1970) Lysis of blue-green algae by Myxobacter. J Bacteriol 104:453–463Google Scholar
  152. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847CrossRefGoogle Scholar
  153. Somerville C (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Nat Acad Sci USA 92:6215–6218CrossRefGoogle Scholar
  154. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149CrossRefGoogle Scholar
  155. Subrahmanyam S, Cronan JE Jr (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602Google Scholar
  156. Sukenik A, Wyman KD, Bennett J, Falkowski PG (1987) A novel mechanism for regulating the excitation of photosystem II in green alga. Nature 327:704–707CrossRefGoogle Scholar
  157. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  158. Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092CrossRefGoogle Scholar
  159. Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefGoogle Scholar
  160. Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–333CrossRefGoogle Scholar
  161. The World Bank (2007) Focus B Biofuels: the promise and the risks In: Ross-Larson B (ed) World development report 2008: agriculture for development. The World Bank, Washington, DC, pp 70–71Google Scholar
  162. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45CrossRefGoogle Scholar
  163. Toncheva-Panova T, Pouneva I, Mizinska-Boevska Y (2008) Lysis of the green alga Choricystis minor by bacterial pathogen. Compt Rend Acad Bull Sci 61:1013–1020Google Scholar
  164. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Oxford, pp 178–214Google Scholar
  165. Tripathi U, Venkateshwaran G, Sarada R, Ravishankar GA (2001) Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J Microbiol Biotechnol 17:143–148CrossRefGoogle Scholar
  166. Van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Mol Biol Rev 55:586–620Google Scholar
  167. Vargas CA, Martinez RA (2009) Grazing impact of natural populations of ciliates and dinoflagellates in a river-influenced continental shelf. Aquat Microb Ecol 56:93–108CrossRefGoogle Scholar
  168. Vasudevan P, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430CrossRefGoogle Scholar
  169. Venkatamaran LV, Kanya TCS (1981) Insect contamination (Ephydra californica) in the mass outdoor cultures of blue green, Spirullina platensis. Proc Ind Acad Sci 90:665–677Google Scholar
  170. Verwoert II, Van Der Linden KH, Walsh MC, Nijkamp HJ, Stuitje AR (1995) Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol Biol 27:875–886CrossRefGoogle Scholar
  171. Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res Oceans 106:11597–11612CrossRefGoogle Scholar
  172. Waterhouse TY, Welschmeyer NA (1995) Taxon analysis of microzooplankton grazing rates and phytoplankton growth rates. Limnol Oceanogr 40:827–834CrossRefGoogle Scholar
  173. Weisse T, Müller H, Pinto-Coelho RM, Schweitzer A, Springmann D, Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35:781–794CrossRefGoogle Scholar
  174. Williams PJB, Laurens LM (2010) Microalgae as biodiesel and biomass feedstocks: reviews and analysis of the biochemistry, energetics and economics. Energy Environ Sci 3:554–590CrossRefGoogle Scholar
  175. Wolfstein K, de Brouwer JFC, Stal LJ (2002) Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances. Mar Ecol Prog Ser 245:21–31CrossRefGoogle Scholar
  176. Wu W-T, Hsieh C-H (2008) Cultivation of microalgae for optimal oil production. J Biotechnol 136(suppl 1):S521–S1521CrossRefGoogle Scholar
  177. Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Ito M, Jenkinson IR, Asakawa M, Honjo T (2009) Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J 3:808–817CrossRefGoogle Scholar
  178. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefGoogle Scholar
  179. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Scottish Association for Marine ScienceScottish Marine InstituteOban, ArgyllUK

Personalised recommendations